
Preprint

LOCATIONREASONER: EVALUATING LLMS ON REAL-
WORLD SITE SELECTION REASONING

Miho Koda∗ Yu Zheng∗ Ruixian Ma Mingyang Sun Devesh Pansare
Fabio Duarte Paolo Santi
Masssachusetts Institute of Technology, Cambridge, MA USA
{mihok485,yu_zheng}@mit.edu

ABSTRACT

Recent advances in large language models (LLMs), particularly those enhanced
through reinforced post-training, have demonstrated impressive reasoning capabili-
ties, as exemplified by models such as OpenAI o1 and DeepSeek-R1. However,
these capabilities are predominantly benchmarked on domains like mathematical
problem solving and code generation, leaving open the question of whether such
reasoning skills generalize to complex real-world scenarios. In this paper, we
introduce LocationReasoner, a benchmark designed to evaluate LLMs’ reasoning
abilities in the context of real-world site selection, where models must identify
feasible locations by reasoning over diverse and complicated spatial, environmental,
and logistic constraints. The benchmark covers carefully crafted queries of varying
difficulty levels and is supported by a sandbox environment with in-house tools
for constraint-based location search. Automated verification further guarantees the
scalability of the benchmark, enabling the addition of arbitrary number of queries.
Extensive evaluations on real-world site selection data from Boston, New York,
and Tampa reveal that state-of-the-art reasoning models offer limited improvement
over their non-reasoning predecessors in real-world contexts, with even the lat-
est OpenAI o4 model failing on 30% of site selection tasks. Moreover, agentic
strategies such as ReAct and Reflexion often suffer from over-reasoning, leading
to worse outcomes than direct prompting. With key limitations of LLMs in holistic
and non-linear reasoning highlighted, we release LocationReasoner to foster the
development of LLMs and agents capable of robust, grounded reasoning in real-
world decision-making tasks. Codes and data for our benchmark are available at
https://github.com/miho-koda/LocationReasoner.

1 INTRODUCTION

Large language models (LLMs) have achieved tremendous success across a broad spectrum of tasks,
ranging from human-like dialogue (Achiam et al., 2023; Team et al., 2023; Liu et al., 2024; Bai et al.,
2023; GLM et al., 2024; Touvron et al., 2023) to agent-based simulations (Park et al., 2023; Shanahan
et al., 2023; Wang et al., 2024a)—progress largely driven by data scaling and computation (Sutton,
2019; Wei et al., 2022a). Recent advances extend the notion of scaling beyond training, introducing
test-time scaling techniques such as chain-of-thought (CoT) prompting (Wei et al., 2022b) and agentic
strategies such as ReAct (Yao et al., 2023b), which enable deeper reasoning through intermediate steps
and tool use. In particular, large-scale reinforcement learning has been applied during post-training to
generate high-quality reasoning traces (e.g., CoT), giving rise to a new class of reasoning models such
as OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025). These reasoning capabilities
are critical for enabling LLMs to tackle complex real-world tasks that often require decomposing
problems, exploring alternative strategies, and interacting with external tools.

Benchmarks play a crucial role in driving LLM progress (Patterson, 2012), and the rapid advancement
of these models has created a growing demand for more challenging and informative evaluation
tasks. While general language understanding benchmarks are widespread (Chiang et al., 2024; Wang
et al., 2024b; Hendrycks et al., 2021a; Rein et al., 2024; Huang et al., 2023), assessing reasoning
capabilities remains considerably more difficult, primarily due to the challenge of verifying the
correctness of LLMs’ reasoning outputs. As a result, current reasoning models are predominantly

∗Equal contribution.

1

https://github.com/miho-koda/LocationReasoner


Preprint

evaluated on domains with easily verifiable solutions, where verifying a solution is much simpler
than generating one. This includes domains such as mathematical problem solving and programming,
exemplified by benchmarks such as AIME (MAA, 2024), MATH500 (Hendrycks et al., 2021b), and
CodeForces (Quan et al., 2025). In contrast, few benchmarks have tackled real-world reasoning
scenarios, which often involve more complicated constraints. For instance, the TravelPlanner
benchmark (Xie et al., 2024) evaluates LLM agents on practical planning tasks but does not include
recent reasoning models and lacks automated verification mechanisms, relying heavily on manual
annotation. Consequently, it remains unclear whether current reasoning LLMs and agents can
effectively generalize to real-world reasoning tasks. This gap highlights the urgent need for a new
benchmark that targets real-world reasoning while remaining scalable and annotation-free.

In this work, we introduce LocationReasoner, a benchmark designed to evaluate the real-world
reasoning capabilities of LLMs through the task of site selection. Site selection is a common
decision-making process in practical business settings, where the objective is to identify feasible
locations based on a diverse set of criteria. This task presents a significant reasoning challenge, as it
requires LLMs to perform structured location search and filtering over queries that involve multiple
constraints with complex logical dependencies. For instance, selecting a site for a new restaurant
may demand reasoning over temporal consumption constraints and spatial transportation constraints,
with various conditions often combined through Boolean logic. To comprehensively assess LLMs’
ability to reason under such practical and multifaceted conditions, we construct the LocationReasoner
benchmark, which includes site selection queries spanning a wide range of difficulty levels. The
benchmark is supported by a sandbox environment equipped with offline datasets and in-house tools
for constraint-based location search.

LocationReasoner differs fundamentally from existing benchmarks in two key aspects. First, it
focuses on practical reasoning, where LLMs must decompose complex constraints into smaller
executable steps and utilize available tools to solve each query. Second, the proposed benchmark
features deterministic and automatically verifiable queries, enabling fully scalable evaluation without
human annotation, and allowing seamless extension to much larger benchmark suites.

The key contributions of this work are: (1) We introduce LocationReasoner, a real-world reasoning
benchmark that grounds LLMs in practical site selection tasks. The benchmark includes a suite of
curated datasets, toolsets, and a sandbox environment to enable out-of-the-box evaluation of LLMs in
complex constraint-based reasoning. (2) We conduct a comprehensive evaluation of four major LLM
families‚—OpenAI (Jaech et al., 2024), Gemini (Team et al., 2023), Claude (Anthropic, 2024), and
DeepSeek (Guo et al., 2025) —covering both general-purpose and reasoning-augmented models, and
two representative agentic workflows, ReAct (Yao et al., 2023b) and Reflexion (Shinn et al., 2023).
(3) Our benchmarking results reveal that current LLMs struggle to effectively handle real-world
reasoning challenges. For instance, the latest OpenAI o4 model achieves only 69.99% success on site
selection queries. Furthermore, reasoning-augmented models and agentic strategies provide limited
gains compared to direct prompting of general models. In-depth analysis uncovers key limitations in
holistic and nonlinear reasoning, pointing to critical bottlenecks that need to be addressed to improve
LLM performance on practical real-world tasks.

2 LOCATIONREASONER

Rule-Based 
Generation

LLM-Based 
Generation

Query Generation 

LLM Agent Ground Truth

Compare

Tool 1

Tool 2

Tool 3

Tool 1

Tool 2

Tool 3

Figure 1: Execution pipeline.

We center the LocationReasoner benchmark around practical
site selection, a problem that is easy to understand and intuitive,
but also requires multi-step reasoning across all constraints. As
illustrated in Figure 1, we construct the entire query genera-
tion and execution pipeline so that it can be fully automated
to support scalable evaluation. Queries are generated through
rule-based and LLM-based approaches to cover diverse test sce-
narios, using real data from Boston, New York, and Tampa. A
fixed set of in-house tools are provided to achieve a controlled
and interpretable environment for testing the proposed LLMs’
ability to reason and plan under real-world constraints. The
queries are routed through two execution pathways: a deter-
ministic code-based system that applies filters using in-house

2



Preprint

Table 1: In-house tools description.
Category Tool Name Description

Loader Tools get_poi_spend_dataset Loads POI metadata and consumer spending patterns.
get_parking_dataset Loads parking facility data including location and area.

Zone Tools create_zone Creates a zone DataFrame of POIs grouped by zone.
assign_parking_zones Assigns each parking lot to a zone.
get_zone_center Returns the geographic center of a zone.
get_neighbor_zones Finds the closest zones to a given zone by distance.

Analysis Tools get_spendparam_years Computes aggregated spend over selected years.
get_num_parking Counts parking lots per zone.
get_largest_parking_lot_area Returns the area of the largest parking lot per zone.
get_largest_parking_capacity Returns the maximum parking capacity per zone.
get_distance_km Calculates haversine distance between two points.

Filter Tools filter_df_based_on_zone Filters a DataFrame to only include specified zones.
filter_pois_by_top_category Filters POIs by top-level category.
filter_pois_by_sub_category Filters POIs by sub-category.
get_transport_pois_in_zone Finds transport POIs by type and groups them by zone.

Population Tool get_population Retrieves population per zone using Google Places API.

tools, and an LLM agent system that interprets and solves the same queries. The system logs and
compares the final site selections from both paths, enabling large-scale benchmarking without manual
annotation or intervention. It is worth noting that LocationReasoner supports fully automated query
generation and verification, thus the benchmark can be easily scaled up to incorporate an arbitrary
number of queries.

2.1 ENVIRONMENT SETTING

We construct a sandbox environment to ensure a stable and consistent evaluation of all LLM agents,
where datasets are fixed, no external API calls are made, and all tool functionalities remain constant.

Datasets. The benchmark database is constructed by integrating multiple real-world datasets to
provide a rich and realistic foundation for constraint-based planning. Specifically, we construct the
database by merging data from the SafeGraph dataset1, which includes detailed information on Points
of Interest (POIs), parking facilities, and consumer spending patterns from 2019 to 2025. To enrich
the spatial and demographic context, we incorporate population data from Google Places API2 and
transportation network data from OpenStreetMap3. This integrated dataset enables agents to reason
about accessibility, mobility, and demand when evaluating site suitability.

Tools. To support structured reasoning, the sandbox contains a set of in-house tools that LLM agents
can call during problem solving. These tools expose curated functionalities such as filtering zones,
analyzing parking availability, retrieving spending patterns over time, and evaluating transportation
accessibility. We provide a detailed description of each tool in Table 1.

2.2 QUERY DESIGN

We design queries to systematically evaluate an LLM agent’s ability to reason over various constraints
using in-house tools. By defining constraints, threshold ranges, and logical compositions, queries
can be generated in bulk through either rule-based generation or LLM-based generation. The rule-
based approach is rigid and syntactically precise, as predefined constraints are directly encoded into
executable templates. It ensures that all conditions are logically well-formed and interpretable by
deterministic code. LLM-based generation introduces linguistic diversity. The system feeds the
same set of structured constraints to a language model and asks it to produce free-form queries in
natural language. Queries are categorized into three difficulty levels, reflecting an increasing level
of complexity. Specifically, difficulty is determined by the number of constraints, diversity of tools
involved, the depth of reasoning required, the linguistic complexity of the query, and the necessity
to synthesize and compare heterogeneous data sources across spatial and temporal dimensions.

1https://www.safegraph.com/
2https://developers.google.com/maps/documentation/places/web-service/overview
3https://www.openstreetmap.org/

3



Preprint

The difficulty level enables controlled benchmarking across different kinds of reasoning scenarios,
ranging from straightforward constraint filtering to complex, multi-faceted decision-making. The
query variants mimic the types of natural, often nuanced questions that real users might ask when
selecting a site, testing the LLM’s ability to precisely extract and interpret user requests. We provide
detailed descriptions and examples of different difficulty levels as follows:

• Simple. Simple queries involve direct calls to a single in-house tool with a numerical threshold or
binary filter. These queries require minimal coordination between tools.
Example: “I want to build a retro roller rink with at least 3 parking lots. Where should I look?”

• Medium. Queries at this level introduce logical dependencies between constraints and often require
coordination across multiple tools. These queries combine 2 to 3 simple constraints using Boolean
operators such as AND or OR, chaining together multiple easy-level conditions. Additionally,
medium queries demand mathematical reasoning and often involve relationships across structural
features (e.g., neighboring zones), socio-economic indicators (e.g., spending patterns), or temporal
variation (e.g., comparing data from different years).
Example: "Find zones where at least 35% of total raw total spend in 2020 comes from the top
category {Restaurants and Other Eating Places}."

• Hard. Hard queries consist of typically 3-6 composite constraints derived from simple or
medium-level logic, combined using AND, OR, and NOT operators. These queries demand
nuanced, multi-tool reasoning, trade-off analysis, and often involve exclusionary conditions. They
closely resemble real-world decision-making scenarios in site selection, where users express both
strong preferences and explicit disqualifiers, requiring the agent to balance multiple objectives
while avoiding infeasible options.
Example: "Launch a creative co-working café — needs at least 26 POIs total in that area and also
strong local spending with 50%+ from sub-category of {Full-Service Restaurants} in 2022, but I’m
not interested if the number of POIs in that same category dominates the area by 30%."

2.3 REASONING APPROACHES

Our goal is to assess whether LLMs can reason over multi-step planning constraints, invoke appropri-
ate in-house tools, and return correct site selection outputs. We explore three distinct strategies:

• Direct Prompting. We provide LLMs with relevant context of available in-house tools and
structured data, prompting them to directly generate executable Python code that fulfills the query
and outputs a list of candidate locations.

• ReAct (Reasoning + Acting). The ReAct framework (Yao et al., 2023b) is adopted to guide the
agent through an iterative loop of Thought-Action-Observation (TAO). In the Thought step, the
agent reflects on its current state and reasons about what to do next. In the Action step, it either
calls an in-house tool or runs custom Python code. Executing custom Python code is particularly
useful for performing transitional logic such as filtering results, combining intermediate outputs, or
applying custom calculations. The resulting output is captured in the Observation step and stored
as part of the agent’s evolving internal state. These observations are continuously fed back to the
model, enabling it to reason with an evolving memory of prior tool outputs and decisions. The
model is also allowed to store and reference intermediate results.

• ReAct + Reflexion. Reflexion (Shinn et al., 2023) extends the ReAct framework by allowing
the model to reflect on failed attempts such as code errors or reaching the maximum step limit
without producing a result. In these cases, the model receives feedback from its prior reasoning
trace and uses it to revise its approach. This added layer of self-correction helps the model identify
mistakes, adjust its logic, and improve tool usage in subsequent retries, making it especially useful
for handling complex, multi-constraint queries.

2.4 AUTOMATED VERIFICATION

To ensure that each test case has a clearly defined and feasible solution, we develop a set of de-
terministic, rule-based functions that serve as the ground truth logic for evaluating site selection.
These logic scripts are constructed using the same in-house tools available to the LLM agent and are
designed to satisfy all constraints specified in each query. For each query, the script returns a set of

4



Preprint

valid zones that fully meet the defined conditions. During evaluation, the output of the LLM agent is
compared directly against these ground truth results to assess correctness. This approach ensures
consistent, reproducible evaluation across all queries, and is automated without any human annotation.
We evaluate the agent’s ability to generate complete outputs, satisfy user-defined constraints, and
accurately identify valid zones with the following complementary metrics:

• Delivery Rate measures the proportion of queries for which the LLM agent successfully returns
selected zones. A process is considered completed if the agent successfully produces an output
without execution failure. For agents evaluated via direct prompting, the generated code must run
without syntax or runtime errors. For agents evaluated under the ReAct or Reflexion framework,
the agent must avoid generating incorrect or unexecutable code, prevent infinite reasoning loops,
and successfully complete the task within a strict limit of 30 reasoning steps. This metric captures
basic functional reliability, as failed plans cannot be evaluated for correctness.

• Perfect Pass Rate measures the percentage of outputs in which the set of zones returned by the
agent exactly matches the ground truth derived from our objective logic. A plan is considered
perfect only if it satisfies all constraints and produces no extraneous or missing zones. This strict
metric ensures full compliance with the query’s requirements and serves as a high-confidence
indicator of planning accuracy.

• Precision, Recall, and F1 Score are standard classification metrics assessing zone-level selection
accuracy in addition to binary success metrics.

3 BENCHMARKING RESULTS

For the direct prompting setup, we test a range of models spanning multiple providers, including
DeepSeek (V3, R1), OpenAI (GPT-4o, o4-mini), Gemini (1.5, 2.5), and Claude (3, 3.5). Each model
receives the same prompt structure, tool descriptions, and structured input data, and is tasked with
generating executable Python code that satisfies the constraints specified in each query and outputs
a list of candidate locations. Notably, we cover both general and reasoning models of each LLM
family, to assess whether such advertised reasoning capabilities lead to improved performance in
real-world structured, constraint-driven reasoning tasks. For the ReAct and Reflexion frameworks,
we focus our evaluation on OpenAI’s GPT-4o model. This setup allows us to examine the benefits of
iterative reasoning, tool chaining, and self-correction over single-shot prompting approaches.

Table 2 summarize the results of 316 site selection queries (114 simple, 102 medium, 102 hard) using
Boston data, from which we have the following observations.

Limited overall performance. The overall model performance on the LocationReasoner benchmark
remains limited, as most models fail to generate complete and accurate outputs across varying
difficulty levels. The average perfect pass rate for 8 different LLMs is only 49.61%. Even the
best-performing model, OpenAI o4-mini, achieves only a 69.99% perfect pass rate and an overall F1
score of 0.57. This reflects a significant gap between current LLM capabilities and the demands of
complex real world reasoning tasks.

Difficulty sensitivity. Across all models, performance consistently degrades as task difficulty
increases. All key metrics decline from simple to medium to hard queries. Specifically, the average
perfect pass rate on hard queries is only 33.82%, which is much lower than 61.49% of simple
queries. This trend highlights that while some LLMs may be capable of handling basic filtering or
single-constraint tasks, they struggle to generalize to multi-step reasoning and more compositional
decision-making challenges.

Reasoning LLMs offer significant improvements. With the exception of the DeepSeek family,
the other three families show substantial improvements in their reasoning models compared to their
non-reasoning baseline counterparts. For example, Gemini 2.5, advertised as a reasoning-optimized
model, achieves an overall F1 score of 0.48 and a perfect pass rate of 62%. Its predecessor, Gemini
1.5, reaches only a 27% perfect pass rate and an F1 score of 0.21. However, the gains remain far
from transformative. Gemini 2.5 still fails over 35% of simple queries and more than half of medium
ones. This underscores that even when reasoning-optimized models do improve over their previous
versions, their performance still falls short of the reliability required for real-world reasoning tasks.

5



Preprint

Table 2: Performance metrics on LocationReasoner by model and difficulty level on Boston data.
Model Difficulty Delivery Rate Perfect Pass Precision Recall F1 Score

Direct Prompting

Deepseek V3

Simple 92.98% 68.42% 0.73 0.69 0.67
Medium 79.17% 60.42% 0.55 0.52 0.51

Hard 77.19% 42.11% 0.24 0.20 0.18
Overall 83.33% 57.00% 0.51 0.47 0.46

Deepseek R1

Simple 92.59% 75.00% 0.73 0.71 0.69
Medium 76.04% 61.46% 0.55 0.54 0.51

Hard 71.57% 36.27% 0.23 0.25 0.22
Overall 80.39% 58.92% 0.51 0.51 0.48

Simple 89.81% 71.30% 0.66 0.61 0.60
Medium 85.42% 55.21% 0.57 0.46 0.45

Hard 88.24% 37.25% 0.26 0.17 0.15
OpenAI 4o

Overall 87.91% 55.00% 0.50 0.42 0.40

Simple 91.82% 81.82% 0.74 0.74 0.72
Medium 89.58% 73.96% 0.67 0.64 0.61

Hard 88.24% 53.92% 0.42 0.40 0.38
OpenAI o4-mini

Overall 89.94% 69.99% 0.61 0.59 0.57

Gemini 1.5

Simple 46.30% 29.63% 0.32 0.30 0.30
Medium 51.04% 32.29% 0.27 0.25 0.23

Hard 46.08% 19.61% 0.13 0.08 0.09
Overall 47.71% 27.00% 0.24 0.21 0.20

Gemini 2.5

Simple 92.59% 77.78% 0.65 0.65 0.64
Medium 80.21% 63.54% 0.52 0.50 0.48

Hard 83.33% 45.10% 0.33 0.35 0.32
Overall 85.62% 62.00% 0.50 0.51 0.48

Simple 66.67% 35.19% 0.39 0.34 0.31
Medium 47.92% 21.88% 0.14 0.08 0.07

Hard 30.39% 9.80% 0.03 0.01 0.01
Claude 3 Haiku

Overall 48.69% 23.00% 0.19 0.15 0.13

Simple 67.59% 52.78% 0.51 0.50 0.48
Medium 65.62% 54.17% 0.43 0.40 0.39

Hard 46.08% 26.47% 0.22 0.21 0.18
Claude 3.5 Haiku

Overall 59.80% 44.00% 0.39 0.37 0.35

Agentic Workflow

ReAct

Simple 72.22% 39.81% 0.44 0.35 0.36
Medium 92.71% 26.04% 0.37 0.17 0.18

Hard 85.29% 16.67% 0.25 0.07 0.09
Overall 83.01% 28.00% 0.35 0.20 0.21

ReAct + Reflexion

Simple 99.07% 32.41% 0.54 0.27 0.29
Medium 94.79% 37.50% 0.52 0.29 0.31

Hard 97.06% 29.41% 0.31 0.13 0.14
Overall 97.06% 33.00% 0.46 0.23 0.24

Agentic strategies do not guarantee better results. Agentic strategies such as ReAct and Reflexion
do not outperform direct prompting. Despite being designed to simulate step-by-step human reasoning,
ReAct + Reflexion achieves only a 33% perfect pass rate and an overall F1 score of 0.24, which is
substantially lower than the best-performing LLMs using direct prompting. This suggests that agentic
strategy alone is insufficient without more reliable reasoning abilities of the base model. We provide
detailed explanations on the inferior performance of agentic strategies in Appendix A.1.

4 SCALABILITY AND STATISTICAL ROBUSTNESS

The automated query generation and verification property of LocationReasoner ensures its scalability
to incorporate more queries and more datasets. In this section, we re-ran the experiments in two
additional cities: New York and Tampa. These cities feature distinctive urban layouts and provide a
more comprehensive testbed for spatial reasoning. From Table 4 in Appendix we observe that the

6



Preprint

results on these new datasets are consistent with our initial findings, showing that even top-performing
models struggle with complex spatial reasoning, and highlighting the persistent challenges in this
domain. Particularly, the best-performing model, Gemini 2.5, can only achieve a Perfect Pass Rate of
58.40% on hard queries in New York, and 61.74% in Tampa. This expansion demonstrates that our
framework is robust and applicable to different site selection environments.

30 60 90 120 150 180 210
Number of Queries

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfe

ct
 P

as
s R

at
e

Gemini 1.5
Gemini 2.5
ReAct
ReAct + Reflexion

Figure 2: Model performance convergence with
increasing query count.

To evaluate the robustness of our benchmark
with respect to dataset size, we further con-
ducted an analysis tracking the Perfect Pass Rate
of models as the number of queries increases us-
ing the Boston dataset. As shown in Figure 2,
the performance for all models begins to con-
verge around 150 queries, with subsequent fluc-
tuations remaining minimal. This indicates that
our choice of ∼300 queries per city is more than
sufficient to provide a stable and statistically sig-
nificant signal of model capability. Furthermore,
since our queries and the sandbox environment
support fully automated evaluation, the size of
the benchmark can be easily and efficiently in-
creased in future work to test even more fine-
grained aspects of LLM reasoning. This focus
on automated, low-cost scalability makes Loca-
tionReasoner a uniquely practical and sustainable tool for rigorously testing complex, constraint-based
spatial and logical reasoning that is complementary to the tested abilities on other benchmarks.

5 ERROR ANALYSIS

OpenAI o4-mini OpenAI o4 DeepSeek V3 DeepSeek R10

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

Logic Error
Edge Case Error

In House Tool Error
Prompt Error

Code Error

Figure 3: Breakdown of failure types for OpenAI
and DeepSeek models

LLMs consistently struggle with five primary
failure types, and we show the breakdown of
these failures in Figure 3. These errors often
overlap, but their root causes reflect distinct rea-
soning weaknesses that hinder constraint satis-
faction and plan validity.

Logic Error encompasses broken reasoning
chains, incorrect constraint handling, and im-
properly ordered filtering logic. This includes
sequential filtering mistakes where each con-
straint is applied too early, altering the input for
future conditions. In ReAct, logic errors often
emerge as inconsistent multi-step chains, where
prior outputs are forgotten or overwritten. In direct prompting, they tend to surface as incorrect
condition checks or missing final evaluations.

Edge Case Error indicates that LLMs frequently misinterpret constraints that require careful logic
around null values or boundary conditions. A common example involves requests like “fewer than 3
competitors,” where agents exclude zones with zero competitors–despite these being valid. These
failures stem from inflexible logic structures and an inability to reason inclusively.

Tool Error captures failures where the model misuses, miscalls, or entirely ignores in-house tools.
Examples include passing incorrect argument formats, selecting a tool misaligned with the constraint
type, or chaining incompatible tool outputs. LLMs sometimes bypass the toolset and attempt to write
their own versions of utility functions, which introduce further bugs and inconsistencies. These issues
reveal brittle tool affordance understanding and poor mapping between language and tool usage.

Prompt Error. Prompt-related failures involve misinterpreting user intent. In many cases, they
misclassify the type of reasoning needed (e.g., assuming a ranking is needed when only filtering
is requested), leading to logic or tool selection failures. These mistakes reflect weak grounding in
language understanding and sensitivity to phrasing variations.

7



Preprint

Table 3: Correction rates (%) for reasoning vs. non-reasoning model pairs across difficulty levels.

Difficulty OpenAI
o4-mini vs 4o

Claude
3.5 vs 3

Deepseek
R1 vs V3

Gemini
2.5 vs 1.5

ReAct
Reflexion vs None

Simple 18.89 28.26 10.10 21.74 6.67
Medium 23.68 30.30 2.82 20.00 18.82
Hard 17.95 16.67 4.08 21.62 16.87

Code Error. Code-specific issues include syntax errors, missing return statements, incorrect indenta-
tion, and unsafe operations such as division by zero. These errors prevent valid plans from executing
altogether and reduces the agent’s delivery rate.

We evaluate whether reasoning models can correct the errors made by their non-reasoning counterparts.
Table 3 shows the results where Correction Rate is defined as the proportion of test cases in which
the reasoning model produces a correct output while the non-reasoning model fails. Our results
indicate that reasoning models are particularly effective in correcting failures in medium queries.
This is likely because medium queries contain a high concentration of logic-related errors, which are
well suited to correction through enhanced reasoning. In contrast, easy queries tend to involve edge
cases, while hard queries are often dominated by syntax issues and execution errors, where reasoning
alone is insufficient to guarantee success. For example, OpenAI’s o4-mini corrects 25.36% more
errors over GPT-4o in medium queries than hard or simple ones. However, the extent of improvement
varies considerably across model families, highlighting that the effectiveness of reasoning depends
not only on the presence of reasoning mechanisms but also on how well they are integrated and
executed. We provide concrete failure examples including the generated codes as well as prompt
ablation experiments in Appendix A.2-A.3.

6 CASE STUDY

Looking for a spot to build a shopping 
mall, with at least 200 parking spaces

ReAct
Thought 1: I need to identify zones with 
parking lots that have at least 200 spaces… 
Action 1: get_largest_parking_capacity
Observation 1: Zone 1 has 160 parking 
space, Zone 2 has … 

Thought 2: I need to identify zones with 
shopping mall, I should first filter the POIs 
by category
Action 2: fiter_by_category(Shopping Mall)
Observation 1: No zones contain the 
category Shopping Mall

…

Reach Step Limit: FORCED STOP 

Figure 4: Over-reasoning

We observe a high frequency of logic errors across all models
and test cases. Therefore, we focus our analysis on this category.
Below are representative test cases that specifically highlight
different forms of logical failure.

Over-reasoning (Direct Prompting and ReAct). Agents fre-
quently demonstrate over-reasoning by performing unnecessary
operations that go beyond the requirements of the prompt. This
often stems from misinterpreting implicit cues. In direct prompt-
ing, agents tend to apply extra filters that overly constrain the
result set, introducing conditions not specified in the query.
In the ReAct setting, the model continues to invoke tools and
apply filters even after all constraints have been met, lacking
a clear signal for termination. As illustrated in Figure 4, the
ReAct agent first retrieves parking capacity correctly, then unnecessarily proceeds to filter for the
presence of shopping malls and many other unrelated tools. The agent accumulates irrelevant actions
until it reaches the step limit and fails to return an answer, despite having the correct information
early on.

I’m looking for zones with fewer than 3 competitors in sub category 
{Personal Care Services} OR a population of at least 12,000 

across this zone and 2 neighboring zones.

LLM Agent Ground Truth

filter_by_category

get_neighbor_zone

get_population

filter_by_category

get_neighbor_zone

get_population

Figure 5: Sequential Filtering

Sequential Filtering (Direct Prompting). In
complex queries involving multiple chains of
constraints, the model often applies filters se-
quentially rather than evaluating the logic holis-
tically. As shown in Figure 5, the query contains
an OR condition between competitor count and
population. The correct approach (right) evalu-
ates both branches independently before merg-
ing the results. However, the LLM agent (left)
applies filters sequentially, first by competitor
count and then by population, prematurely discarding zones that could have satisfied the second
condition. This flawed execution leads to valid zones being excluded, revealing a logical failure
where sequential filtering overrides the intended logical structure.

8



Preprint

7 RELATED WORK

LLM Reasoning. Reasoning represents a key capability of advanced LLMs, enabling them to
decompose tasks into smaller subproblems, perform structured search, and make decisions for
complex problem solving. Various techniques have been proposed to enhance the reasoning abilities
of LLMs. Prompting methods (Wei et al., 2022b; Yao et al., 2023a; Besta et al., 2024), such as
chain-of-thought (CoT) prompting (Wei et al., 2022b), encourage models to generate intermediate
and structured reasoning steps before producing final answers. These sequential reasoning patterns
can be further extended into more expressive structures, such as trees (Yao et al., 2023a), for handling
more complex reasoning workflows. Beyond prompting, recent research has shown that reasoning
capabilities can also be distilled into LLMs’ generation itself through post-training strategies (Guo
et al., 2025; Snell et al., 2024; Brown et al., 2024; Zelikman et al., 2024). In particular, reinforcement
learning is often used to fine-tune models to produce high-quality reasoning trajectories, such as
CoT-style paths (Guo et al., 2025; Havrilla et al., 2024; Kumar et al., 2024; Carta et al., 2023). In
parallel, agentic approaches offer an alternative paradigm, equipping LLMs with tools, external
memory, and planning mechanisms to solve complex tasks (Wiesinger et al., 2024; Yao et al., 2023b;
Shinn et al., 2023; Zhao et al., 2024; Shen et al., 2023; Schick et al., 2023). For instance, the
ReAct framework (Yao et al., 2023b) enables in-context learning by prompting models to engage
in iterative thought-action-observation cycles. In this work, we systematically evaluate both LLMs
and reasoning-enhanced strategies on practical real-world reasoning tasks through our proposed
benchmark.

Benchmarks for LLMs and Agents. Benchmarks play an essential role in the development and
evaluation of LLMs. Fundamental language capabilities are typically assessed through general-
purpose benchmarks targeting language understanding and factual question answering (Srivastava
et al., 2022; Wang et al., 2024b;b; Rein et al., 2024). In addition, domain-specific benchmarks
have been introduced to evaluate LLMs’ proficiency in specialized areas such as biology (Chen &
Deng, 2023) and law (Fei et al., 2023). As reasoning has emerged as a central focus in recent LLM
research, benchmarks tailored specifically to reasoning have become increasingly important. Given
the complexity of evaluating LLM reasoning, existing benchmarks often focus on domains with well-
defined verifiers, where checking the correctness of a solution is significantly easier than generating
it. Two such domains–mathematics and programming–have become prominent battlegrounds for
reasoning-oriented LLMs (Hendrycks et al., 2021b; Quan et al., 2025; MAA, 2024), exemplified
by benchmarks such as MATH500 (Hendrycks et al., 2021b) and CodeForces (Quan et al., 2025).
However, constructing benchmarks for practical reasoning tasks remains challenging, largely due
to the difficulty of defining objective metrics and the high cost of manual annotation (Xie et al.,
2024). In contrast, our benchmark evaluates LLMs and agents on real-world site selection reasoning
while maintaining full scalability through automatic verification, requiring no human annotation.
This enables robust, reproducible, and extensible evaluation of reasoning capabilities in realistic
decision-making contexts.

8 CONCLUSION

In this paper, we present LocationReasoner, a benchmark designed to evaluate LLMs and agents
on real-world site selection reasoning tasks, supported by a sandbox environment enriched with
built-in tools and curated datasets. Through systematic evaluation of both general-purpose and
reasoning-oriented LLMs from multiple providers, along with various agentic strategies, we find
that current models perform poorly, with even the most advanced reasoning LLM failing to solve
over 30% of the queries. Our analysis identifies key bottlenecks, particularly in over-reasoning and
the challenges of sequential problem-solving, which limit the effectiveness of LLMs in complex
real-world reasoning scenarios. LocationReasoner serves as a scalable and extensible testbed: new
constraints can be added and automatically validated without the need for human annotation. We
hope LocationReasoner will drive progress in enhancing the reasoning capabilities of LLMs and
contribute to the advancement of general intelligence for solving practical, high-stakes problems.

9



Preprint

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/
claude-3-5-sonnet, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts:
Solving elaborate problems with large language models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 17682–17690, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Qiyuan Chen and Cheng Deng. Bioinfo-bench: A simple benchmark framework for llm bioinformatics
skills evaluation. BioRxiv, pp. 2023–10, 2023.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot arena: An open
platform for evaluating llms by human preference. In Forty-first International Conference on
Machine Learning, 2024.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
Zongwen Shen, and Jidong Ge. Lawbench: Benchmarking legal knowledge of large language
models. arXiv preprint arXiv:2309.16289, 2023.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Dan Zhang, Diego Rojas,
Guanyu Feng, Hanlin Zhao, et al. Chatglm: A family of large language models from glm-130b to
glm-4 all tools. arXiv preprint arXiv:2406.12793, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021a. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang,
Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving with
the MATH dataset. In Joaquin Vanschoren and Sai-Kit Yeung (eds.), Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks
1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021b. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html.

10

https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=d7KBjmI3GmQ
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/be83ab3ecd0db773eb2dc1b0a17836a1-Abstract-round2.html


Preprint

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese
evaluation suite for foundation models. Advances in Neural Information Processing Systems, 36:
62991–63010, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

MAA. American invitational mathematics examination - aime. https://maa.org/
math-competitions/american-invitational-mathematics-examination-aime,
2024. American Invitational Mathematics Examination, February 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
annual acm symposium on user interface software and technology, pp. 1–22, 2023.

David Patterson. For better or worse, benchmarks shape a field. Communications of the ACM, 55,
2012.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–68551,
2023.

Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models.
Nature, 623(7987):493–498, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36:8634–8652, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 13(1):38, 2019.

11

https://maa.org/math-competitions/american-invitational-mathematics-examination-aime
https://maa.org/math-competitions/american-invitational-mathematics-examination-aime


Preprint

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, et al. A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6):186345, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. In The Thirty-eight Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2024b.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Trans. Mach. Learn. Res., 2022, 2022a. URL https://openreview.net/forum?id=
yzkSU5zdwD.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Julia Wiesinger, Patrick Marlow, and Vladimir Vuskovic. Agents. 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. In International
Conference on Machine Learning, pp. 54590–54613. PMLR, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: Llm
agents are experiential learners. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 19632–19642, 2024.

A APPENDIX

A.1 REASONING ARCHITECTURE COMPARISON

Direct code generation consistently outperforms ReAct/Reflexion because of the fundamental dif-
ferences in how each paradigm approaches logical reasoning. Below, we highlight two critical
architectural dimensions: holistic vs. chunked planning and linear vs. nonlinear reasoning.

12

https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD


Preprint

Holistic vs. Chunked Planning Code generation promotes holistic planning. The model sees the
entire query and designs a solution that integrates all constraints into one coherent logic block. It
defers execution until the entire logical structure is assembled and performs filtering or aggregation
after all conditions are accounted for. On the contrary, ReAct operates in chunks where each TAO
cycle is focused on a single subproblem. The agent reasons incrementally, using only its most recent
observations to decide what to do next. While this can help with short-term reactivity, the model loses
sight of the broader goal. Instead of building a global solution from the outset, ReAct focuses on
local decisions by evaluating one tool at a time without fully understanding how each TAO interacts,
which results in fragmented logic, redundant actions, and plans that satisfy isolated constraints but
fail as a cohesive whole.

Nonlinear vs. Linear Reasoning Direct code generation follows a nonlinear reasoning approach.
The model has the flexibility to write logic in any order, reuse variables fluidly, and jump between
intermediate steps as needed. This flexibility allows the agent to integrate information from different
sources without being tied to a rigid step-by-step flow. In contrast, ReAct enforces a linear reasoning
pattern. The agent processes the query as a series of discrete TAO steps. Each step is tightly
coupled to the previous one, which limits the model’s ability to reorganize its plan or make global
optimizations. This structure makes ReAct more prone to local errors and brittle when reasoning
requires backtracking or dynamic reorganization.

A.2 MODEL ERRORS

These examples illustrate how LLMs perform on individual questions and the types of reasoning
errors that can occur, even with advanced models.

CASE 1: EDGE CASE — ZONES WITH 0 COMPETITORS ARE EXCLUDED

User Query: “I want to open a clothing store in White Plains, with the top category being Other
Schools and Instruction and sub-category Exam Preparation and Tutoring. Show me zones with less
than 3 competitors in the same category.”

Analysis: Claude3Haiku filters only among existing competitors, excluding zones with 0 competitors.
DeepseekV3 ensures all zones are evaluated by initializing the count to 0.

Incorrect – Claude3Haiku
category_filtered = filter_pois_by_sub_category(

poi_spend_df, "Other Schools and Instruction")
competitor_counts = category_filtered[’zone_id’].value_counts().

reset_index()
competitor_counts.columns = [’zone_id’, ’num_competitors’]
valid_zones = competitor_counts[

competitor_counts[’num_competitors’] < 3][’zone_id’].tolist()

Correct – Deepseek V3
all_zones = poi_spend_df[’zone_id’].unique()
category_filtered = filter_pois_by_sub_category(

poi_spend_df, "Other Schools and Instruction")
competitor_counts = category_filtered[’zone_id’].value_counts().to_dict()
zone_to_count = {zone_id: competitor_counts.get(zone_id, 0)

for zone_id in all_zones}
valid_zones = [zone_id for zone_id, count in zone_to_count.items() if

count < 3]

CASE 2: PROMPT MISINTERPRETATION

User Query: “I want to open a new restaurant, but I need a location with at least 50 parking spots
nearby.”

Analysis: Gemini 1.5 misinterprets “50 parking spots” as requiring 50 different lots, while OpenAI
4o correctly interprets the query as needing one lot with sufficient capacity.

13



Preprint

Incorrect – Gemini 1.5

if get_num_parking(parking_df) >= 50:
valid_zones.append(zone)

Correct – OpenAI 4o

if get_largest_parking_capacity(parking_df) >= 50:
valid_zones.append(zone)

CASE 3: CODE ERROR

User Query: “Looking to build a spa — find me areas where sub-category Advertising Agencies
dominates at least 40% of 2024 spend or has 2+ parking spots.”

Analysis: Deepseek R1 crashes due to lack of error handling in low-data zones, causing a divide-by-
zero error. GPT-4o correctly calls the tool and includes a guard clause to ensure stability.

Incorrect – Deepseek R1

ad_pois = filter_pois_by_sub_category(zone_pois, "Advertising Agencies")
ad_spend = get_spendparam_years(ad_pois, "RAW_TOTAL_SPEND", 2024)
total_spend = 0
if ad_spend / total_spend >= 0.4 or parking_count >= 2:

valid_zones.add(zone_id)

Correct – GPT-4o

ad_pois = filter_pois_by_sub_category(zone_pois, "Advertising Agencies")
ad_spend = get_spendparam_years(ad_pois, "RAW_TOTAL_SPEND", 2024)
total_spend = get_total_spend(zone_id, 2024)

if (total_spend > 0 and ad_spend / total_spend >= 0.4) or parking_count
>= 2:
valid_zones.add(zone_id)

These examples illustrate how LLMs perform on individual questions and the types of reasoning
errors that can occur, even with advanced LLMs. We have added these case studies to the revised
paper to provide more concrete examples of model performance and the challenges faced in this
domain.

A.3 PROMPT ABLATION

To investigate whether prompt design can improve accuracy and reasoning ability, we conduct a
prompt ablation study by adding explicit guidance to the instruction. We augment the prompt with
phrases such as “think holistically,” “consider edge cases,” and “do not discard zones early.” This
modification is evaluated on hard queries using the Gemini model family. The revised prompts
are referred to as v2. As shown in Table 5, both Gemini 1.5 and Gemini 2.5 exhibit performance
improvements with the revised prompting strategy. The perfect pass rate for Gemini 2.5 increases from
45.10% to 49.02%, a relative improvement of 8.7%, while Gemini 1.5 has a relative improvement of
4.9%. Similar trends are observed across precision, recall, and F1 score, with Gemini 2.5 showing
especially notable gains. These findings suggest that better prompting can meaningfully enhance
agent reasoning in complex queries where logical missteps and premature filtering are common
failure modes. The pronounced improvement on Gemini 2.5 illustrates that stronger models are more
responsive to strategic instruction tuning.

14



Preprint

Table 4: Performance metrics on LocationReasoner on New York and Tampa
Location Model Difficulty Delivery Rate Perfect Pass Precision Recall F1 Score

New York

Gemini 1.5
Simple 55.40% 46.87% 0.35 0.28 0.31

Medium 49.24% 34.49% 0.22 0.20 0.21
Hard 38.97% 20.13% 0.10 0.07 0.08

Gemini 2.5
Simple 96.73% 78.88% 0.67 0.63 0.65

Medium 89.02% 73.61% 0.53 0.47 0.50
Hard 73.62% 58.40% 0.36 0.32 0.34

ReAct
Simple 87.16% 45.54% 0.48 0.38 0.42

Medium 81.05% 33.72% 0.41 0.19 0.26
Hard 78.24% 15.15% 0.28 0.08 0.12

ReAct + Reflexion
Simple 98.97% 46.28% 0.58 0.32 0.41

Medium 93.41% 29.03% 0.55 0.27 0.36
Hard 92.37% 23.95% 0.35 0.14 0.20

Tampa

Gemini 1.5
Simple 50.48% 39.12% 0.29 0.27 0.20

Medium 53.76% 44.07% 0.21 0.18 0.19
Hard 34.66% 23.82% 0.12 0.06 0.08

Gemini 2.5
Simple 90.21% 71.26% 0.62 0.66 0.64

Medium 84.85% 67.89% 0.50 0.48 0.49
Hard 77.03% 61.74% 0.31 0.37 0.34

ReAct
Simple 68.45% 46.78% 0.42 0.39 0.40

Medium 76.12% 33.25% 0.33 0.21 0.26
Hard 59.88% 18.92% 0.20 0.09 0.12

ReAct + Reflexion
Simple 96.88% 35.62% 0.50 0.30 0.37

Medium 91.23% 39.05% 0.46 0.26 0.33
Hard 89.47% 26.73% 0.28 0.12 0.16

Table 5: Performance metrics on hard queries across Gemini model versions.

Model Delivery Rate Perfect Pass Precision Recall F1 Score

Gemini 2.5 83.33% 45.10% 0.3300 0.3500 0.3200
Gemini 2.5 v2 93.14% 49.02% 0.3792 0.3663 0.3437
Gemini 1.5 46.08% 19.61% 0.1300 0.0800 0.0900
Gemini 1.5 v2 43.14% 20.58% 0.1402 0.0901 0.0927

15


	Introduction
	 LocationReasoner
	Environment Setting
	Query Design
	Reasoning Approaches
	Automated Verification

	Benchmarking Results
	Scalability and Statistical Robustness
	Error Analysis
	Case Study
	Related Work
	Conclusion
	Appendix
	Reasoning Architecture Comparison
	Model Errors
	Prompt ablation


