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ABSTRACT 
Accurate user interest modeling is vital for recommendation scenar-
ios. One of the efective solutions is the sequential recommendation 
that relies on click behaviors, but this is not elegant in the video feed 
recommendation where users are passive in receiving the stream-
ing contents and return skip or no-skip behaviors. Here skip and 
no-skip behaviors can be treated as negative and positive feedback, 
respectively. With the mixture of positive and negative feedback, 
it is challenging to capture the transition pattern of behavioral 
sequence. To do so, FeedRec has exploited a shared vanilla Trans-
former, which may be inelegant because head interaction of multi-
heads attention does not consider diferent types of feedback. In 
this paper, we propose Dual-interest Factorization-heads Attention 
for Sequential Recommendation (short for DFAR) consisting of 
feedback-aware encoding layer, dual-interest disentangling layer 
and prediction layer. In the feedback-aware encoding layer, we frst 
suppose each head of multi-heads attention can capture specifc 
feedback relations. Then we further propose factorization-heads 
attention which can mask specifc head interaction and inject feed-
back information so as to factorize the relation between diferent 
types of feedback. Additionally, we propose a dual-interest disen-
tangling layer to decouple positive and negative interests before 
performing disentanglement on their representations. Finally, we 
evolve the positive and negative interests by corresponding towers 
whose outputs are contrastive by BPR loss. Experiments on two 
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real-world datasets show the superiority of our proposed method 
against state-of-the-art baselines. Further ablation study and visu-
alization also sustain its efectiveness. We release the source code 
here: https://github.com/tsinghua-fb-lab/WWW2023-DFAR. 
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1 INTRODUCTION 
Online sequential recommendation [32] has achieved great success 
for its time-aware personalized modeling and has been widely ap-
plied in Web platforms, including micro-video, news, e-commerce, 
etc. Especially in today’s video feed recommendation, users are 
attracted immensely by video streaming which can be treated as a 
sequence of items. Formally speaking, the sequential recommenda-
tion is defned as predicting the next interacted item by calculating 
the matching probability between historical items and the target 
item. As shown in Figure 1 (a), existing sequential recommendation 
models often exploit click behaviors of users to infer their dynamic 
interests [11, 14, 31, 41, 42], the optimization of which samples 
un-clicked items as negative feedback. However, such an approach 
only inputs positive items into the sequential model, and negative 
items are sampled as target items, ignoring the transition pattern 
between historical positive and negative items. 

In the video feed recommendation where a single item is exposed 
each time, users either skip or do not skip the recommended items, 
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Figure 1: Illustration of click-based sequential recommenda-
tion and our dual-interest sequential recommendation which 
is hybrid with positive and negative feedback. 

as illustrated in Figure 1 (b). Skip can be treated as a kind of negative 
feedback which means users don’t want to receive certain items, 
while no-skip can be treated as a kind of positive feedback. That is to 
say, users are passive in receiving the recommended items without 
providing active click behaviors [10, 18, 22] in such video feed 
recommendations. However, the existing click-based sequential 
recommendation does not consider the transition pattern between 
positive and negative items. Indeed, there are two key challenges 
when modeling positive and negative feedback in one sequence. 
• Complex transition between positive and negative feed-
back. The transition pattern among interacted items has become 
far more complex due to negative feedback. A user may provide 
negative feedback only because she has consumed a very sim-
ilar item before, which makes accurate modeling of transition 
essential and challenging. 

• Mixed interest in one behavioral sequence. The negative 
feedback in the behavioral sequence brings signifcant challenges 
to interest learning. The traditional methods of sequential recom-
mendation always conduct a pooling operation on user sequence 
to obtain the users’ current interest, which will fail when the 
sequence is hybrid with positive and negative signals. 
To address the above challenges, in this work, we propose a 

model named Dual-interest Factorization-heads Attention for Se-
quential Recommendation (short for DFAR), further extracting the 
transition pattern and pair-wise relation between positive and neg-
ative interests. To address the frst challenge, in the feedback-aware 
encoding layer, we assume each head of multi-head attention [28] 
tends to capture specifc relations of certain feedback [30]. As difer-
ent heads of multi-head attention [28] are independent, it may fail 
to capture the transition pattern between diferent feedback when 
positive feedback and negative feedback are indeed not independent 
of each other. Thus we exploit talking-heads attention [25] to im-
plicitly extract the transition pattern between positive and negative 
historical items. However, talking-heads attention may mix difer-
ent heads too much without sufcient prior knowledge. To explicitly 
extract the transition pattern between positive and negative histor-
ical items, we further propose feedback-aware factorization-heads 
attention which can even incorporate the feedback information into 
the head interaction. To address the second challenge, we propose a 
dual-interest disentangling layer and prediction layer, respectively, 
to disentangle and extract the pair-wise relation between positive 
and negative interests. Specifcally, we frst mask and encode the 
sequence hybrid with positive feedback and negative feedback into 
two single interest representations before performing disentangle-
ment on them to repel the dissimilar interests. Then we perform 

a prediction of each interest with the corresponding positive or 
negative tower and apply contrastive loss on them to extract their 
pair-wise relation. 

In general, we make the following contributions in this work. 
• We have taken the pioneering step of fully considering the mod-

eling of negative feedback, along with its impact on transition 
patterns, to enhance sequential recommendation. 

• We propose a feedback-aware encoding layer to capture the tran-
sition pattern, dual-interest disentangling layer and prediction 
layer to perform disentanglement and capture the pair-wise rela-
tion between positive and negative historical items. 

• We conduct experiments on one benchmark dataset and one col-
lected industrial dataset, where the results show the superiority 
of our proposed method. A further ablation study also sustains 
the efectiveness of our three components. 

2 PROBLEM FORMULATION 
Click-based Sequential Recommendation. Given item sequence 
I� = (�1, �2, . . . , �� ) with only positive feedback, the goal of tradi-
tional click-based sequential recommendation is accurately predict-
ing the probability that given user � will click the target item i.e., 
��+1. The traditional click-based sequential recommendation can be 
formulated as follows. 
Input: Item sequence I� = (�1, �2, . . . , �� ) with only positive feed-
back for a given user �. 
Output: The predicted score that the given user � will click the 
target item �� +1. 
Dual-interest Sequential Recommendation. Given item se-
quence I� = (�1, �2, . . . , �� ) with both positive and negative feedback, 
the dual-interest sequential recommendation aims to better predict 
the probability that given user � will skip or not skip the target 
item i.e., ��+1. The dual-interest sequential recommendation with 
both positive and negative feedback can be formulated as follows. 
Input: Item sequence I� = (�1, �2, . . . , �� ) with positive and negative 
feedbacks for a given user �. 
Output: The predicted score that the given user � will skip or do 
not skip the target item �� +1. 
3 METHODOLOGY 
Our model captures the relation between positive feedback and neg-
ative feedback at the transition level and interest level of sequential 
recommendation, respectively, by the proposed Feedback-aware 
Encoding Layer, Dual-interest Disentangling Layer and Prediction 
Layer, as shown in Figure 2. 
• Feedback-aware Encoding Layer. We build item embeddings 

by item IDs and label embeddings by item feedback and further 
propose feedback-aware factorization-heads attention to capture 
the transition pattern between diferent feedback. 

• Dual-interest Disentangling Layer. We mask the sequence hy-
brid with both positive and negative feedback into two sequences 
with solely positive or negative feedback. After encoding two 
split sequences with independent factorization-heads attention 
to extract the positive and negative interests, we then disentangle 
them to repel the dissimilar interests. 

• Dual-interest Prediction Layer. We further extract the positive 
and negative interests with independent towers and then perform 
contrastive loss on them to extract the pair-wise relation. 
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Figure 2: Illustration of DFAR. (�) Feedback-aware Encoding Layer is linked after the Feedback-aware Embedding Layer where 
each historical item is injected with a label embedding according to the corresponding feedback; It consists of linear transfor-
mation and feedback-aware factorization-heads attention. In the linear transformation, input embeddings are transformed 
into query, key and value matrices. In feedback-aware factorization-heads attention, the transition relation between diferent 
items is factorized into diferent heads which are masked according to the positive or negative feedback. (��) Dual-interest 
Disentangling Layer decouples positive and negative interests and performs disentanglement to repel the dissimilar represen-
tations of diferent feedback; (���) Dual-interest Prediction Layer evolves positive and negative interests with corresponding 
towers and perform BPR loss to capture the pair-wise relation. 

3.1 Feedback-aware Encoding Layer 
In the feedback-aware encoding layer, we frst inject each histori-
cal item embedding with corresponding feedback embeddings to 
incorporate the feedback information into each historical item em-
bedding. Then we further propose talking-heads attention and 
feedback-aware factorization-heads attention to capture the transi-
tion pattern between positive and negative historical items. 

3.1.1 Feedback-aware Embedding Layer. To fully distinguish 
positive and negative feedback, we build a label embedding matrix 
L ∈ R2×� , besides the item embedding matrix E ∈ R�×� . Here � 
denotes the number of items, and � is the dimensionality for the 
hidden state. Then we inject the feedback information into the item 
embedding and obtain the feedback-aware input embeddings as the 
model input. Therefore, given item sequence I� = (�1, �2, . . . , �� ), 

we can obtain the feedback-aware item embeddings E� ∈ R� ×� as: 

E� = [E�1 , E�2 , . . . , E�� ] + [L��,�1 
, L��,�2 

, . . . , L��,�� ], (1) 

where {��,�1 , ��,�2 , · · · , ��,�� } are feedback of items {�1, �2, · · · , �� }. 
Here ��,�1 = 1 if �1 is the no-skip item, and ��,�1 = 0 if �1 is the skip 
item. Note that if the sequence length is less than � , we can pad E� 

with zero embedding [14]. 
3.1.2 Talking-Heads Atention. After obtaining the input em-
beddings for positive and negative historical items, we then cap-
ture the transition pattern between them. The existing work, Fee-
dRec [37], exploits vanilla Transformer to roughly capture this 
transition pattern, of which multi-head attention [14] is the essen-
tial part, having the following equation: � � 

S = MHA(Q, K, V) = A���V1, . . . , A��� (2)1 � V� W0, 
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� Q � 
A� � K

= softmax   ( ℎ√ ℎ ) , 
ℎ (3)

� 
 Q W�

 = Q V �
ℎ , Kℎ = �     KW ,

ℎ ℎ = VW , (4)
ℎ ℎ 

where ℎ ∈ {1, 2, · · · , � } is the number of heads. W  � � ×� 0 ∈ R and 
� W , W� , W�   R�×� ∈ are parameters to be learned. MHA means

multi-heads
ℎ ℎ ℎ

 attention [28]. However, diferent heads of multi-head 
attention are independent of each other, sharing no information 
across heads. If assuming diferent heads capture specifc relations 
between diferent feedback, then this means there is no information 
sharing across diferent feedback. Thus we frst propose talking-
heads attention [25] to address this issue as below. � � 

S = THA � �� � �� (Q, K, V) = A1 V1, . . . , A � W0, (5)  � V Q K  1 1�   √ A 1   �    Q2K2� A 2   √  .  = W � 
 � ,     (6)  . �� .  .   .      . 

 A� ′   K� 
 Q �  � 

 √ 
�   A� ��  1 softmax A1)  A�   ( 

��    2 ( softmax A  . = W�  2)   .  , (7)  .  � ��  .  .   .  � ��     softmax  
 A  (A  ′ ) 

� � 
where W  � ′×� , W�  R �∈   ′  ∈ R ×� and  

� �  W0 ∈�  R��×� ar  
to

�  e
parameters  be learned. Her

�
e
�
 THA refers to talking-heads atten-

tion. However, the interaction between diferent heads in talking-
heads attention is implicit, which may confuse the task for each 
head and result in overftting. Not to mention, the two additional 
linear transformations (i.e. Eq.(6) and Eq.(7)) of talking-heads atten-
tion will increase the computation cost. 

3.1.3 Feedback-aware Factorization-heads Atention. In this 
part, we factorize the interaction between positive and negative 
feedback. Traditional multi-heads attention assigns similar items 
with higher attention weights. However, in our problem with both 
positive and negative feedback, two similar items may have difer-
ent attention weights due to the feedback they have. For example, 
an NBA fan skips the recommended video about basketball when 
he/she has watched a lot of basketball videos. But he/she engages 
in the video about basketball when he/she only has watched a 
few videos about basketball. In the frst case we should repel the 
representations between historical basketball videos and target bas-
ketball videos, while in the second case we should attract them. 
That is to say, it is necessary to inject the user’s feedback into the 
transition pattern between diferent feedback. Here we suppose dif-
ferent heads can represent diferent transition patterns for diferent 
feedback [30]. To explicitly factorize interaction across diferent 
heads, we further propose factorization-heads attention as: h i

S = FHA(Q, K, V  = A���)  1 1 . .
,

V1, . ,  A���
,�

V� �  W0, (8)

ℎA��� Q K � 
ℎ

= ,
ℎ

softmax ( 1 2√  )  
ℎ

(9) 
1, 2 � 

where ℎ1, ℎ2 ∈ {1, 2     . W  � � ×� , · · · , � } 0 ∈ R are parameters to be 
learned. Here FHA is our proposed factorization-heads attention. 
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Figure 3: Illustration of label mask Mℎ1,ℎ2 on head interaction. 
Here we show the comprehensible case with two heads, where 
the frst half of heads, i.e. head 1, represents negative head 
and second half of heads, i.e. head 2, represents positive head. 

The factorization-heads attention can represent � × � relations 
by � heads. That is to say, our factorization-heads attention can√
reduce � times parameters if we want to represent � head in-
teraction relations like talking-heads attention or multi-heads at-
tention. Besides, to further inject the prior feedback knowledge 
into the factorization-heads attention, we propose feedback-aware 
factorization-heads attention with a label mask Mℎ1,ℎ2 ∈ {0, 1}� ×� 
as: ih 

S = FFHA(Q, K, V) = A� ���V1, . . . , A� ��� (10)1,1 �,� V� W0,

� Qℎ1 Kℎ2 
= softmax (Mℎ1,ℎ2 √ ) , 

� 

= 1, if ℎ1 ∈ { ��,� � +1, ��,� � +2, · · · , (��,� +1)� 
2 2 

A� ��� 
ℎ1,ℎ2 

(11) 

where Mℎ1,ℎ2,�, � }, ℎ2 ∈ 

· · · , � }, � ∈ {1, 2, · · · , � }
0, otherwise. Here the frst half of heads w.r.t. 

2 

{ ��,� � +1, ��,� � +2, · · · ,2 2 
and Mℎ1,ℎ2,�, � 

(��,� +1)� 
2 }, � ∈ {1, 2,

= 
� {1, 2, · · · , 2 } represent negative heads and second half of heads 

� w.r.t. { � + 1, + 2, · · · , � } represent positive heads. For example, 2 2 
as shown in Figure 3, if item � is positive and item � is negative (i.e., 
��,� = 1 and ��,� = 0), ℎ1 in positive half and ℎ2 in negative half 
will be preserved, i.e., M2,1,�, � = 1, and M1,1,�, � , M1,2,�, � , M2,2,�, � = 0. 

Besides, FFHA is our proposed feedback-aware factorization-
heads attention. Apart from the advantage of explicit interaction be-
tween diferent heads, unlike talking-heads attention, our factorization-
heads attention also improves the multi-heads attention without 
high computation cost. We feed the input embedding into the 
feedback-aware factorization attention module as: 

S = FFHA(E� , E� , E� ), (12) 

where S are the obtained feedback-aware sequential representations. 
We put the pseudocode of FHA at Appendix A.1 and compare its 
complexity with MHA and THA at Appendix A.1.5. 

3.2 Dual-interest Disentangling Layer 
Though feedback-aware factorization-heads attention has factor-
ized the transition relation between positive feedback and negative 
feedback, their interest-level relations require further extracting. In 
this part, we decouple the positive and negative interests and then 
perform disentanglement on them to repel the dissimilar interests. 

3.2.1 Dual-interest Decoupling Atention. After capturing the 
transition pattern between positive feedback and negative feedback, 
we then flter out each feedback by a corresponding feedback mask 
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as follows, 
S� = [S�1 , S�2 , . . . , S�� ] ∗ [��,�1 , ��,�2 , . . . , ��,�� ], 

S� = [S�1 , S�2 , . . . , S�� ] ∗ (1 − [��,�1 , ��,�2 , . . . , ��,�� ]), 
(13) 

which are then fed into the corresponding factorization-heads at-
tention modules to enhance the transition pattern learning for each 
feedback as: 

S� = FHA(S� , S� , S� ), S� = FHA(S� , S� , S� ), (14) 

where S� (or S� ) are the single-feedback sequential representations 
for positive feedback (or negative feedback). In the subsequent 
section, we will exploit these fltered representations to further 
extract the interest-level relations. 

3.2.2 Dual-interest Aggregation and Disentanglement. The 
positive and negative interests of a given user should be distin-
guished from each other. Hence we aim to repel the positive and 
negative representations of corresponding interests. Specifcally, 
we assume the target item is possibly either positive or negative. 
Then we assign the target item with positive and negative label 
embeddings, respectively, in positive and negative assumed cases. 
To calculate the attention scores of positive and negative historical 
items, we fuse them with the target item in assumed positive and 
negative cases as below.

( ) ( )
A� = MLP (E�� +1 + L1)∥S� , A� = MLP (E�� +1 + L0)∥S� , 

(15) 
where A� and A� ∈ R� ×� are the positive and negative attention 
scores. MLP is the multi-layer perceptron. Here L1 and L0 are the 
label embeddings for positive and negative feedback, respectively. 
With the calculated attention scores by (15), we can then obtain 
the single-feedback aggregated representations for positive and 
negative items, respectively, as,

( ) ( )
F� A� S� , F� A� S� = softmax = softmax , (16) ∑� ∑� 

f� F� F� = � , f
� = , (17)� 

� =1 �=1 

which are then further disentangled with cosine distance as: 

f� · f� 
L� = . (18)

f� f� ×‖ ‖ ‖ ‖ 
where ∥ · ∥ is the L2-norm. By this disentangling loss, we can 
repel the aggregated positive and negative representations so as to 
capture the dissimilar characteristics between them. 

3.3 Dual-interest Prediction Layer 
In this section, we predict the next item of diferent interests by pos-
itive and negative towers. Finally, we further perform contrastive 
loss on the outputs of positive and negative towers so as to extract 
the pair-wise relation between them. 

3.3.1 Dual-interest Prediction Towers. To extract the positive 
and negative interests, we fuse the feedback-aware sequential repre-
sentations, single-feedback sequential representations, and single-
feedback aggregated representations into the corresponding pos-
itive or negative prediction tower. Before feeding diferent repre-
sentations into the fnal prediction towers, we frst aggregate part 

of them by the sum pooling as: 
� � � ∑ ∑ ∑ 

� S� � S� s = = = ,S� , s � , s � 
� =1 �=1 � =1 

which are then fnally fed into the positive and negative prediction 
towers as: ( )

logit� = MLP s∥s� ∥f� ∥(E�� +1 + L1) , (19)�,� 
( )

logit� = MLP s∥s� ∥f� ∥(E�� +1 + L0) . (20)�,� 

where logit� and logit� are positive and negative predicted logits�,� �,� 
for user � on time step � , aiming to capture the positive and negative 
interests, respectively. Here f� and f� are pooled at Eq.(17). 

3.3.2 Pair-wise Contrastive Loss. When the target item is posi-
tive, the prediction logit of the positive tower will be greater than 
that of the negative tower, and vice versa. After obtaining the posi-
tive and negative prediction logits, we then perform BPR loss [23] 
on them as: 

⎧− log(� (logit�,� � − logit� ��,� = 1, 
L��� �,� )), 

= (21) 
− log(� (logit�,� � − logit� ��,� = 0. ⎨

⎩ 
�,� )), 

where � denotes the sigmoid function. With this BPR loss, we can 
extract the pair-wise relations between positive and negative logits. 

3.4 Joint Optimization 
Though we have positive and negative towers, in the optimization 
step, we only need to optimize the next item prediction loss with 
the positive tower as: ∑ ( ( ) ( ))1 

�� �� L = − ��,� log ˆ�,� + 1 − ��,� log 1 − ˆ�,� , (22)|R | (�,�� ) ∈R 

where �̂� = �,� ) and R is the training set. The negative� (logit� 
�,� 

prediction tower �̂� indeed will be self-supervised and optimized�,�

by the contrastive loss of Eq.(21). After obtaining the main loss for 
the next item prediction, disentangling loss for repelling represen-
tations and BPR loss for pair-wise learning, we can then jointly 
optimize them as: 

L � = L + ���� L��� + �� L� + �∥Θ∥, (23) 
where ���� and �� are hyper-parameters for weighting each loss. 
Here � is the regularization parameter, and Θ denotes the model 
parameters to be learned. 

4 EXPERIMENTS 
In this section, we experiment on a public dataset and an industrial 
dataset, aiming to answer the following research questions (RQ): 
• RQ1: Is the proposed DFAR efective when compared with the 

state-of-the-art sequential recommenders? 
• RQ2 : What is the efect of our proposed feedback-aware en-

coding layer, dual-interest disentangling layer and prediction 
layer? 

• RQ3 : How do the heads of proposed feedback-aware factorization-
heads attention capture the transition pattern between diferent 
feedback? 

921



WWW ’23, April 30–May 04, 2023, Austin, TX, USA Guanyu Lin, Chen Gao, Yu Zheng, Jianxin Chang, Yanan Niu, Yang Song, Zhiheng Li, Depeng Jin, and Yong Li 

Table 1: Micro-video and Amazon data statistics. 

Dataset Micro-video Amazon 
#Users 37,497 6,919 
#Items 129,092 28,695 

#Records Positive 
Negative 

6,413,396 
5,448,693 

99,753 
20,581 

Avg. records per user 316.35 17.39 

• RQ4: How does the proposed method perform compared with 
the sequential recommenders under diferent sequence lengths? 

We also look into the question: "how do the auxiliary loss for dis-
entanglement and pair-wise contrastive learning perform under 
diferent weights?" in Appendix A.4. 

4.1 Experimental Settings 
4.1.1 Datasets. The data statistics of our experiments are illus-
trated in Table 1 where Micro-video is a collected industrial dataset 
and Amazon is the public benchmark dataset which is widely used 
in existing work for sequential recommendation [19]. The detailed 
descriptions of them are as below. 
Micro-video This is a popular micro-video application dataset, 
which is recorded from September 11 to September 22, 2021. In 
this platform, users passively receive the recommended videos, 
and their feedbacks are mostly either skip or no-skip. Skip can be 
treated as a form of negative feedback, and no-skip can be treated as 
a form of positive feedback. That is to say, we have hybrid positive 
and negative feedback in this sequential data which is very rare in 
modern applications. 
Amazon1 This is Toys domain from a widely used public e-commerce 
dataset in recommendation. The rating score in Amazon ranges 
from 1 to 5, and we treat the rating score over three and under two 
as positive and negative feedback, respectively, following existing 
work DenoisingRec [33] which is not for the sequential recommen-
dation. 

For the Micro-video dataset, interactions before and after 12 pm 
of the last day are split as the validation and test sets, respectively, 
while interactions before the last day are used as the training set. 
For the Amazon dataset, we split the last day as the test set and the 
second last day as the validation set, while other days are split as 
the training set. 

4.1.2 Baselines and Evaluation Metrics. We compare our DFAR 
with the following state-of-the-art methods for sequential recom-
mender systems. 
• DIN [42]: It aggregates the historical items via attention score 

with the target item. 
• Caser [27]: It captures the transition between historical items 

via convolution. 
• GRU4REC [11]: It captures the transition between historical 

items via GRU [5]. 
• DIEN [41]: It captures the transition between historical items 

via interest extraction and evolution GRUs [5]. 
• SASRec [14]: It captures the transition between historical items 

via multi-heads attention [28]. 
1https://www.amazon.com 

• THA4Rec: It means talking-heads attention [25] for the sequen-
tial recommendation, which is frstly applied in the recommen-
dation by us. 

• DFN [38]: It purifes unclick (weak feedback) by click (strong 
positive feedback) and dislike (strong positive feedback). 

• FeedRec [37]: It further performs disentanglement on the weak 
positive and negative feedback. 
Besides, Widely-used AUC and GAUC [9] are adopted as accu-

racy metrics here while MRR@10 and NDCG@10 [19] are used as 
ranking metrics for performance evaluation. The detailed illustra-
tion of them is in Appendix A.2. 

4.1.3 Hyper-parameter Setings. Hyper-parameters are gener-
ally set following the default settings of baselines. We strictly follow 
existing work for sequential recommendation [19] and leverage 
Adam [15] with the learning rate of 0.0001 to weigh the gradients. 
The embedding sizes of all models are set as 32. We use batch 
sizes 20 and 200, respectively, on the Micro-video and Amazon 
datasets. We search the loss weights for pair-wise contrastive loss 
in [10−4 , 10−3 , 10−2 , 10−1]. 

4.2 Overall Performance Comparison(RQ1) 
We compare our proposed method with eight competitive baselines, 
and the results are shown as Table 2, where we can observe that: 
• Our method achieves the best performance. The results 

on two datasets show that our DFAR model achieves the best 
performance compared with these seven baselines on all metrics. 
Specifcally, GAUC is improved by about 2.0% on the Micro-video 
dataset and 0.5% on the Amazon dataset and when comparing 
DFAR with other baselines. Please note that 0.5% improvement 
on GAUC could be claimed as signifcant, widely acknowledged 
by existing works [42]. Besides, the improvement is more sig-
nifcant in the Micro-video with more negative feedback, which 
means incorporating the negative feedback into the historical 
item sequence can boost the recommendation performance. 

• Existing work roughly captures the relation between posi-
tive feedback and negative feedback. FeedRec and DFN even 
underperform some traditional sequential recommendation mod-
els like GRU4REC and Caser in Amazon dataset. Besides, though 
they outperform other baselines in Micro-video dataset, the im-
provement is still slight. In other words, their designs fail to 
capture the relation between positive feedback and negative feed-
back, which motivates us to further improve them from transition 
and interest perspectives. 

4.3 Ablation Study (RQ2) 
We further study the impact of four proposed components as Table 3, 
where FHA represents the factorization-heads attention, the MO 
represents the mask operation on factorized heads for factorization-
heads attention, IDL means the interest disentanglement loss on 
the positive and negative interest representations, and IBL means 
the interest BPR loss on the positive and negative prediction logits. 
From this table, we can have the following observations. 
• Factorization of heads for transition attention weights is 
important. Removing FHA and MO both show signifcant per-
formance drops, which means these two components are both 
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Table 2: Overall evaluations for DFAR against baselines under Micro-video and Amazon datasets on four metrics. Here Improv. 
is the improvement. Bold is the highest result and underline is the second highest result. 

Models DIN Caser GRU4REC DIEN SASRec THA4Rec DFN FeedRec Ours Improv. 

AUC 0.7345 0.8113 0.7983 0.7446 0.8053 0.8104 0.8342 0.8119 0.8578 2.83% 
MRRMicro-video NDCG 

0.5876 
0.6876 

0.6138 
0.7079 

0.5927 
0.6916 

0.5861 
0.6861 

0.6046 
0.7009 

0.6080 
0.7035 

0.6321 
0.7222 

0.6095 
0.7047 

0.6568 
0.7410 

3.91% 
2.60% 

GAUC 0.7703 0.8211 0.8041 0.7753 0.8120 0.8138 0.8362 0.8180 0.8545 2.19% 

AUC 0.6595 0.7192 0.7278 0.6688 0.6903 0.7069 0.6998 0.7037 0.7333 0.76% 
MRRAmazon NDCG 

0.4344 
0.5669 

0.4846 
0.6073 

0.4901 
0.6114 

0.4547 
0.5832 

0.4604 
0.5883 

0.4599 
0.5879 

0.4743 
0.5990 

0.4675 
0.5938 

0.4980 
0.6175 

1.61% 
1.00% 

GAUC 0.6618 0.7245 0.7266 0.6859 0.7029 0.7021 0.7120 0.7079 0.7305 0.54% 

Table 3: Efectiveness study of our proposed components. 
FHA means factorization-heads attention; MO means label 
mask operation on heads; IDL means interest disentangling 
loss on positive and negative representations; IBL means 
interest BPR loss on positive and negative logits. 

Dataset 
Methods w/o FHA 

Micro-video 
w/o MO w/o IDL w/o IBL Ours 

AUC 0.8360 0.8473 0.8475 0.8364 0.8578 
MRR 0.6198 0.6378 0.6377 0.6324 0.6568 
NDCG 0.7127 0.7264 0.7264 0.7212 0.7410 
GAUC 0.8319 0.8428 0.8436 0.8283 0.8545 
Dataset Amazon 
AUC 0.7133 0.7141 0.7284 0.7137 0.7333 
MRR 0.4782 0.4883 0.4855 0.4839 0.4980 
NDCG 0.6016 0.6095 0.6073 0.6057 0.6175 
GAUC 0.7054 0.7137 0.7128 0.7047 0.7305 

necessary to each other. Specifcally, removing FHA means it is 
impossible to apply the mask on the implicit head interaction of 
either multi-heads attention or talking-heads attention. At the 
same time, removing MO on FHA will cause it to fail to exploit 
the prior knowledge of labels for historical items and degener-
ate to even as poor as multi-heads attention or talking-heads 
attention in the Amazon dataset. 

• Pair-wise interest is more important than disentangling 
interest. Removing IDL and IBL will both drop the performance, 
while removing IBL is more signifcant. This is because con-
trastive learning by BPR loss can indeed inject more self-supervised 
signals, while disentanglement solely tends to repel the dissimilar 
representations of positive feedback and negative feedback. 

4.4 Visualization for Attention Weights of 
Heads (RQ3) 

As illustrated in Eq.(8), our proposed factorization-heads attention 
can factorize the relation between diferent feedback, which makes 
it possible for us to study the attention weights between them. 
Therefore, we perform visualization on the attention weights be-
tween positive and negative heads in Figure 4, where ℎ1 and ℎ2 
(defned at (11)) represent heads for source and target behaviors, 
respectively, with corresponding feedback. From this fgure, we can 
observe that: (1) For the collected Micro-video dataset, users are still 
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Figure 4: Visualization of accumulated attention weights be-
tween diferent heads. Here ℎ1 and ℎ2 represent the heads 
for the source and target behaviors, respectively (i.e., if the 
source behavior is negative and target behavior is positive, 
we have ℎ1 = 0 and ℎ2 = 1). This illustrates our method can 
factorize and extract the relation between diferent feedback 
based on the proposed factorization-heads attention. 
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Figure 5: AUC performance comparisons under diferent 
sequence lengths on the Micro-video and Amazon datasets. 

willing to watch videos even after they receive the disliked videos. 
This may be because the negative recommended videos are of low 
cost for users as they can easily skip the disliked videos, making 
no signifcant impact on their later preferred videos; (2) For the 
e-commerce dataset about Amazon, we can discover that when the 
source feedback is negative, the probability of target feedback being 
negative will increase sharply. This may be because the negative 
purchased items are of high cost in e-commerce for users as it will 
waste their money, increasing their unsatisfed emotion sharply. 
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4.5 The Impact of Sequence Length (RQ4) 
On large-scale online platforms, active users often observe a lot 
of items and generate very long historical item sequences, while 
cold-start users are recorded with very short sequences. Long his-
torical item sequences can bring them more information but the 
problem of gradient vanishing will increase, while short historical 
item sequence brings limited information and tends to overft the 
model. Thus, we divide historical item sequences into fve groups 
based on their lengths and further study how DFAR outperforms 
the attention-based models under diferent lengths, under Micro-
video and Amazon datasets, as illustrated in Figure 5. From the 
visualization, we can observe that: 
• DFAR is superior under diferent sequence lengths. It is 

obvious that there is always a signifcant performance gap be-
tween DFAR and other methods. In the Amazon dataset, where 
the sequence length is relatively short, the AUC performances 
increase with the growth of sequence length for all methods. This 
means a longer sequence can bring more information. However, 
in the Micro-video dataset where the sequence length is relatively 
long, the performances of all methods improve with the increase 
of sequence length and reach their peak at around 50-100. But 
then they all decline with the further increase in length. Most 
importantly, our DFAR outperforms other methods signifcantly 
throughout various sequence lengths. 

• DFAR is stable under diferent sequence lengths. DFAR 
is more stable with the sequence length increasing or decreas-
ing, even into very long or short. In the Amazon dataset, other 
methods frst increase with the sequence length but fuctuate at 
15-20 while DFAR increases steadily with the sequence length. 
In the Micro-video dataset, All methods drop sharply when the 
sequence length is too short or long, but our DFAR is more stable 
and still keeps a decent AUC performance at 0.8382. 

In summary, our DFAR is superior and robust under both long and 
short historical item sequences. 

5 RELATED WORK 
Sequential Recommendation Sequential Recommendation [32] 
predicts the next interacted item of the given user based on his/her 
historical items. As the early work, FPMC [24] exploits the Markov 
chain to capture the transition pattern of historical item sequence 
in the recommendation. Then some advanced deep learning meth-
ods such as RNN [5, 12] and attentive network [28] are applied 
in recommendation [11, 14, 41, 42] to capture the chronological 
transition patterns between historical items. While the evolution of 
RNN-based methods should forward each hidden state one by one 
and are difcult to parallel, attention-based methods can directly 
capture the transition patterns among all historical items at any 
time step. Furthermore, researchers also attempt to leverage convo-
lution neural network [16] to capture the union and point levels 
sequential pattern in recommendation [27]. Compared with CNN-
based methods, attention-based methods are more efective for their 
non-local view of self-attention [34]. However, the most existing se-
quential recommendation is based on click behavior. Recently, there 
have been some methods of achieving sequential recommendations 
beyond click behaviors [20]. For example, DFN [38] captures the 
sequential patterns among click, unclick and dislike behaviors by 
an internal module for each behavior and an external module to 

purify noisy feedback under the guidance of precise but sparse feed-
back. CPRS [36] derives reading satisfaction from the completion 
of users on certain news to facilitate click-based modeling. Based 
on them, FeedRec [37] further enhances sequential modeling by 
a heterogeneous transformer framework to capture the transition 
patterns between user feedback such as click, dislike, follow, etc. 
However, these works mainly focus on exploiting the auxiliary 
feedback to enhance the modeling in the sequential recommenda-
tion, which does not consider the most important characteristic 
- the transition patterns between historical positive and negative 
feedback. Diferently from them, our approach can factorize the 
transition patterns between diferent feedback, achieving more 
accurate modeling for sequential recommendation with both posi-
tive and negative feedback. Additionally, our approach extracts the 
relation between positive and negative feedback at interest level. 
Explainable Attention Attention methods are popular in many 
machine learning felds such as recommender systems [14, 26, 40], 
computer vision [7, 8, 17, 34] and natural language processing [1, 
29], etc. Attention mechanisms are often explainable and have been 
widely used in deep models to illustrate the learned representation 
by visualizing the distribution of attention scores or weights under 
specifc inputs [4, 21, 35]. Some explainable attention methods are 
also generalizable and can be equipped with many backbones. For 
example, L2X [3] exploits Gumbel-softmax [13] for feature selection 
by instance, with its hard attention design [39]. Moreover, VIBI [2] 
further propose a feature score constraint in a global prior so as 
to simplify and purify the explainable representation learning. As 
self-attention is popular [6, 28], there is also a work that explains 
what heads learn and concludes that some redundant heads can be 
pruned [30]. In this work, we propose feedback-aware factorization-
heads attention to explicitly capture the transition pattern between 
positive and negative feedback. The feedback mask matrix in our 
attention module can be treated as hard attention based on feedback. 

6 CONCLUSIONS AND FUTURE WORK 
In this work, we considered the positive and negative feedback 
in the historical item sequence for the sequential recommenda-
tion, while existing works were mostly click-based and considered 
solely positive feedback. Such exploration addressed the challenge 
of current multi-head attention for diferent feedback interactions 
in one sequence. More specifcally, we frst applied talking-heads 
attention in the sequential recommendation and further proposed 
feedback-aware factorization-heads attention to explicitly achieve 
interaction across diferent heads for self-attention. Secondly, we 
proposed disentanglement and pair-wise contrastive learning to 
repel the dissimilar interests and capture the pair-wise relation be-
tween positive and negative feedback. In the future, we plan deploy 
the model in industrial applications to validate online performance. 
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A APPENDIX FOR REPRODUCIBILITY 

A.1 Pseudocode 

Listing 1: Pseudocode for Multi-heads Attention 

1 def MultiHeadAttention ( 
2 X[n, d_X], # n vectors with dimensionality d_X 
3 M[m, d_M], # m vectors with dimensionality d_M 
4 P_q[d_X, d_k, h], # learned linear projection to produce 

queries 
5 P_k[d_M, d_k, h], # learned linear projection to produce 

keys 
6 P_v[d_M, d_v, h], # learned linear projection to produce 

values 
7 P_o[d_Y, d_v, h]): # learned linear projection of output 
8 Q[n, d_k, h] = einsum (X[n, d_X], P_q[d_X, d_k, h]) 
9 K[m, d_k, h] = einsum (M[m, d_M], P_k[d_M, d_k, h]) 
10 V[m, d_v, h] = einsum (M[m, d_M], P_v[d_M, d_v, h]) 
11 
12 L[n, m, h] = einsum (Q[n, d_k , h], K[m, d_k , h]) # 

logits h*n*m* d_k 
13 
14 W[n, m, h] = softmax (L[n, m, h], reduced_dim =m) # 

weights 
15 
16 O[n, d_v , h] = einsum (W[n, m, h], V[m, d_v , h]) # 

h*n*m* d_v 
17 Y[n, d_Y ] = einsum (O[n, d_v , h], P_o[d_Y , d_v , h]) 

# output h*n* d_Y * d_v 
18 return Y[n, d_Y] 

We follow talking-heads attention [25] and present the following 
notation and pseudocode. 

A.1.1 Notation. In our pseudocode, we follow talking-heads at-
tention [25] and have a notation as below. 
• The capital letters represent the variable names, and lower-case 

letters represent the number of dimensions. Each variable of a 
tensor is presented with its dimensions. For example, a tensor for 
an item sequence with batch size �, sequence length �, hidden 
state � is written as: X[b, n, d] [25]. 

• The einsum represents the generalized contractions between ten-
sors without any constraint on their dimension. Its computation 
process is: (1) Broadcasting each input to have the union of all 
dimensions, (2) multiplying component-wise, and (3) summing 
across all dimensions not in the output. The dimensions are iden-
tifed by the dimension-list annotations on the arguments and 
on the result instead of being identifed by an equation, as in 
TensorFlow and NumPy. For example, multiplying two matrices 
is written as: Z[a, c] = einsum (X[a, b], W[b, c]) [25]. 

A.1.2 Multi-heads Atention. The pseudocode for multi-heads 
attention [28] is as shown in Pseudocode 1, where diferent heads 
for Q and K do not interact with each other on line 12. 

A.1.3 Talking-heads Atention. The pseudocode for talking-
heads attention [25] is as shown in Pseudocode 2, where diferent 
heads for Q and K achieve implicit interaction by lines 15 and 18. 

A.1.4 Factorization-heads Atention. The pseudocode for our 
proposed factorization-heads attention is as shown in Pseudocode 3, 
where diferent heads for Q and K achieve explicit interaction by 
line 16. 

Listing 2: Pseudocode for Talking-heads Attention 

1 def TalkingHeadAttention ( 
2 X[n, d_X], # n vectors with dimensionality d_X 
3 M[m, d_M], # m vectors with dimensionality d_M 
4 P_q[d_X, d_k, h_k], # learned linear projection to produce 

queries 
5 P_k[d_M, d_k, h_k], # learned linear projection to produce 

keys 
6 P_v[d_M, d_v, h_v], # learned linear projection to produce 

values 
7 P_o[d_Y, d_v, h_v] 
8 P_l [h_k , h], # talking - heads projection for logits 
9 P_w [h, h_v]): # talking - heads projection for weights 

10 Q[n, d_k, h_k] = einsum (X[n, d_X], P_q[d_X, d_k, h_k]) 
11 K[m, d_k, h_k] = einsum (M[m, d_M], P_k[d_M, d_k, h_k]) 
12 V[m, d_v, h_v] = einsum (M[m, d_M], P_v[d_M, d_v, h_v]) 
13 
14 J[n, m, h_k] = einsum (Q[n, d_k, h_k], K[m, d_k, h_k]) 

# dot prod . n*m* d_k *h_k 
15 L[n, m, h] = einsum (J[n, m, h_k], P_l [h_k, h]) # 

Talking - heads proj . n*m*h* h_k 
16 
17 W[n, m, h] = softmax (L[n, m, h], reduced_dim=m) # 

Attention weights 
18 U[n, m, h_v] = einsum (W[n, m, h], P_w [h, h_v]) # 

Talking - heads proj . n*m*h* h_v 
19 
20 O[n, d_v, h_v] = einsum (U[n, m, h_v], V[m, d_v, h_v]) 

# n*m* d_v * h_v 
21 Y[n, d_Y] = einsum (O[n, d_v, h_v], P_o [d_Y, d_v, 

h_v]) # n* d_Y * d_v * h_v 
22 return Y[n, d_Y] 

A.1.5 Comparison. From these three Python pseudocodes, we 
can discover that our factorization-heads attention achieves head 
interaction at a low cost. The comparison of it with multi-heads 
attention and talking-heads attention are as below. 
• Comparing with Multi-heads Attention: our factorization-

heads attention incorporates the interaction between diferent 
heads with additional four lines at lines 12-14 and 17, which are 
transpose and reshape operations and with only � (1) temporal 
complexity. 2. 

• Comparing with Talking-heads Attention: our factorization-
heads attention achieves explicit interaction with additional trans-
pose and reshape operations at � (1) temporal complexity while 
talking-heads attention achieves implicit interaction with two ma-
trix multiplication operations at � (� ×ℎ� ×ℎ) and � (� ×ℎ ×ℎ� )
temporal complexities 3, respectively. 

2https://stackoverfow.com/questions/58279082/time-complexity-of-numpy-
transpose
3https://en.wikipedia.org/wiki/Computational_complexity_of_matrix_ 
multiplication 
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A.2 Evaluation Metrics 
The detailed illustration of adopted evaluation metrics is as follows. 
• AUC: Randomly selecting one positive item and one negative 

item, it represents the probability that the predicted score of the 
positive item is higher than that of the negative item. It tests the 
model’s ability to classify the positive and negative items. 

• GAUC: It weighs each user’s AUC based on his/her test set size. 
It tests the model’s personalized classifcation ability on each user 
as recommender systems indeed tend to rank preferred items for 
users individually. 

• MRR@K: It is the average of the reciprocal of the frst hit item 
ranking. 

• NDCG@K: It assigns hit items that rank higher with more 
weights and thus tests the model’s ability to rank the hit items 
in higher and more confdent positions. 

A.3 Implementation Details 
We implement all the models by a Microsoft 4 TensorFlow 5 frame-
work in Python, which is accessible here 6. We will publish the 
Micro-video dataset to beneft the community in the future, and 
the public Amazon dataset is accessible at this website 7. 

The environment is as below. 
• Anaconda 3 
• Python 3.7.7 
• TensorFlow 1.15.0 

Besides, for other parameters, we stop the model training with 
early stop step 2 and leverage the MLP layer sandwiched between 
two normalization layers as the prediction tower for each model. 

A.4 Hyper-parameter Study (RQ5) 
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Figure 6: AUC performance of diferent auxiliary loss weights 
w.r.t ���� and �� under Micro-video and Amazon datasets. 

We perform hyper-parameter study on the weights for loss of 
disentanglement and pair-wise contrastive Learning (w.r.t. ���� 
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and �� at Eq.(23)) as Figure 6, varying the loss weights from 10−4 

to 10−1. From the fgure, we can observe that the AUC performance 
reaches the peak at 10−3 under the Amazon dataset while that 
reaches the peak at 10−2 under the Micro-video dataset. This is 
because the rating for Amazon is a discrete value, but the playing 
4https://github.com/microsoft/recommenders 
5https://www.tensorfow.org 
6https://anonymous.4open.science/r/DFAR-8B7B 
7http://jmcauley.ucsd.edu/data/amazon/index_2014.html
time for Micro-video is a continuous value. The partition of positive 
and negative feedback based on continuous value is unclear and 
thus requires more contrastive learning. Based on the above obser-
vation, we fnally choose 10−3 and 10−2 as the best values for the 
loss weights under Amazon and Micro-video datasets, respectively. 

Listing 3: Pseudocode for Factorization-heads Attention 

1 def FactorizationHeadAttention ( 
2 X[n, d_X], # n vectors with dimensionality d_X 
3 M[m, d_M], # m vectors with dimensionality d_M 
4 P_q[d_X, d_k, h], # learned linear projection to produce 

queries 
5 P_k[d_M, d_k, h], # learned linear projection to produce 

keys 
6 P_v[d_M, d_v, h], # learned linear projection to produce 

values 
7 P_o[d_Y, d_v, h]): # learned linear projection of output 
8 Q[n, d_k, h] = einsum (X[n, d_X], P_q[d_X, d_k, h]) 
9 K[m, d_k, h] = einsum (M[m, d_M], P_k[d_M, d_k, h]) 
10 V[m, d_v, h] = einsum (M[m, d_M], P_v[d_M, d_v, h]) 
11 
12 Q[n, h, d_k] = reshape(transpose(Q, [0, 2, 1]), [n * h, 

d_k]) # queries h*n* d_X * d_k 
13 K[d_k, h, m] = reshape(transpose(K, [1, 2, 0]), [d_k, h 

* m]) # keys h*m* d_M * d_k 
14 V[m, d_v, h * h] = tile(V[m, d_v, h], [1, 1, h]) # 

values h*m* d_M * d_v 
15 
16 L[n * h, h * m] = einsum (Q[n * h, d_k], K_[d_k, h * m]) 
17 L[n, h * h, m] = transpose(reshape(L, [n, h * h, m]), 

[0, 2, 1]) # logits h*h*n*m* d_k 
18 
19 W[n, m, h * h] = softmax (L[n, m, h * h], 

reduced_dim=m) # weights 
20 O[n, d_v , h * h] = einsum (W[n, m, h * h], V[m, d_v, h 

* h]) # h*h*n*m* d_v 
21 Y[n, d_Y] = einsum (O[n, d_v, h * h], P_o[d_Y, d_v, h * 

h]) # output h*h*n* d_Y * d_v 
22 return Y[n, d_Y] 
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