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Recommender systems have become crucial in information filtering nowadays. Existing recommender
systems extract user preferences based on the correlation in data, such as behavioral correlation in collab-
orative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However,
unfortunately, the real world is driven by causality, not just correlation, and correlation does not imply
causation. For instance, recommender systems might recommend a battery charger to a user after buying
a phone, where the latter can serve as the cause of the former; such a causal relation cannot be reversed.
Recently, to address this, researchers in recommender systems have begun utilizing causal inference to
extract causality, thereby enhancing the recommender system. In this survey, we offer a comprehensive
review of the literature on causal inference-based recommendation. Initially, we introduce the fundamental
concepts of both recommender system and causal inference as the foundation for subsequent content.
We then highlight the typical issues faced by non-causality recommender system. Following that, we
thoroughly review the existing work on causal inference-based recommender systems, based on a taxonomy
of three-aspect challenges that causal inference can address. Finally, we discuss the open problems in this
critical research area and suggest important potential future works.
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1 INTRODUCTION

In the era of information overload, recommender systems (RecSys) have emerged as the funda-
mental service for facilitating users’ information access. From the early shallow models [47, 75] to
recent advances of deep learning-based ones [15, 31] and the most recent graph neural network-
based models [29, 131], the techniques and models of recommender systems are developing
rapidly. In general, recommender systems aim to learn user preferences by fitting historical be-
haviors, along with collected user profiles, item attributes, or other contextual information. Here,
the interaction is mainly induced by the previous recommender system and is largely affected
by the recommendation policy. Then, recommender systems filter from the item-candidate pools
and select items that match users’ personalized preferences and demands. Once deployed, the
system collects new interactions to update the model, where the whole framework thus forms a
feedback loop.

Generally, recommender systems can be divided into two categories: collaborative filtering
(CF) and content-based recommendation (a.k.a., click-through rate (CTR) prediction, shortened
as CTR prediction). Collaborative filtering focuses on users’ historical behaviors, such as clicking,
purchasing, and so on. The basic assumption of collaborative filtering is that users with similar
historical behaviors tend to have similar future behaviors. For example, the most representative
matrix factorization model (MF) uses vectors to represent users and items, and then it uses
the inner product to calculate the relevance scores between users and items. To improve the
model capacity, recent work [15, 31] takes advantage of deep neural networks for matching users
with items, such as neural collaborative filtering [31], which leverages multi-layer perceptrons to
replace the inner product in the MF model. Furthermore, a broad view of collaborative filtering
models the relevance with consideration of additional information, such as the timestamp of each
behavior in sequential recommendation [12, 132], user social network in social recommenda-
tion 17, 114], and multi-type behaviors in multi-behavior recommendation [21, 117], and so on.
CTR prediction focuses on leveraging the rich attributes and features of users, items, or context to
enhance recommendation. The mainstream CTR prediction task aims to learn high-order features
with the proper feature-interaction module, such as the linear inner product in Factorization
Machine (FM), multi-layer perceptrons in DeepFM [24], attention networks in AFM [119],
stacked self-attention layers in AutoInt [91], and so on.

The basis of today’s recommender systems is to model the correlation, such as behavioral cor-
relation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through
rate prediction. However, the real world is driven by causality rather than correlation, while
correlation does not imply causation. Two kinds of causality widely exist in recommender systems,
user-aspect, and interaction-aspect. The user-aspect causality refers to the users’ decision process
being driven by causality. For example, a user may buy a battery charger after buying a phone, in
which the latter can serve as the cause of the former, and such a causal relation cannot be reversed.
The interaction-aspect causality refers to that the recommendation strategy largely affects users’
interactions with the system. For example, the unobserved user-item interaction does not mean
that the user does not like the item, which may only be caused by non-exposure.

Formally speaking, causality can be defined as cause and effect in which the cause is partly
responsible for the effect [128]. Causal inference is defined as the process of determining and
further leveraging the causal relation based on experimental data or observational data [128].
Two popular and widely-used causal-inference frameworks are the potential outcome framework
(Rubin Causal Model) [76], and the structural causal model (SCM) [69, 71]. Rubin’s Framework
aims to calculate the effect of certain treatments. The structural causal model establishes a
causal graph and corresponding structural equations, comprising a set of variables and structural
equations that depict the causal relationships between these variables.
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Fig. 1. Asimple comparison among three kinds of data issues: data bias, data missing, and data noise, taking
collaborative filtering as an example. In general, data bias refers to the biased data collection (e.g., in confor-
mity bias, user behavior does not full reflect preferences as it may be due to conformity); data missing refers
to the unobserved preferences (labeled with question marks); data noise refers to incorrect data (marked
with red color). As a simple illustration, this figure does not cover other recommendation tasks.

Since following a correlation-driven paradigm, existing recommender systems still suffer from
critical bottlenecks. Specifically, three main challenges limit the effectiveness of the current para-
digm, for which causal inference can serve as a promising solution, as follows:

— The issues of data bias. The collected data, such as the most important user-item interac-
tion data, is observational (not experimental), resulting in biases including conformity bias,
popularity bias, and so on. [55] As for the non-causality recommender systems, not only
the desired user preferences but also the data bias are learned by the model, which leads to
inferior recommendation performance.

— The issues of data missing or even data noise. The collected data in recommender sys-
tems is limited by the collection procedure, which makes there is missing or noisy data. For
example, despite the large-scale item pool, the users only interact with a tiny fraction of
items, which means plenty of unobserved user-item feedback cannot be collected. Moreover,
sometimes the observed implicit feedback is even noisy, not reflecting the actual satisfac-
tion of users, such as those click behaviors that end with negative reviews on E-Commerce
websites or some behaviors by mistake.

— The beyond-accuracy objectives are hard to achieve. Besides accuracy, recommender
systems should also consider other objectives, such as fairness, explainability, transparency,
and so on. Improving these beyond-accuracy objectives may hurt the recommendation accu-
racy, resulting in a dilemma. For example, a model that considers the multiple driven causes
under user behavior, based on assigning each cause with disentangled and interpretable em-
bedding, can well provide both accurate and explainable recommendation. Another impor-
tant objective is diversity but a high-diversity item recommendation list may not be able
to well fit user interest. Here causal inference can help capture why users consume specific
category of items, achieving both high accuracy and diversity.

Recent research on recommender systems tackles these challenges with carefully-designed
causality-driven methods. Over the last two years, there has been a surge of relevant articles, and
there is a very high probability that causal inference will become predominant in the field of recom-
mender systems. In this survey article, we systematically review these pioneering research efforts,
especially focusing on how they address the critical shortcomings with causal inference.

First, recommendation methods incorporating causality can construct a causal graph. Within
this framework, bias is typically viewed as a confounder, which can then be addressed using
causal-inference techniques. Second, regarding the issue of missing data, causality-enhanced
models can assist in constructing a counterfactual world. Thus, the missing data can be inferred
through counterfactual reasoning. Third, causal inference naturally facilitates the development of
interpretable and controllable models. As a result, the explainability of both the model itself and
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the recommendation outcomes can be enhanced. Moreover, other objectives, such as diversity
and fairness, can also be realized since the model becomes more controllable. Specifically, the
current works of causal inference in recommendation can be categorized as follows:

— Data debiasing with causal inference. For issues like popularity bias or exposure bias,
the bias (arising from popularity-aware or exposure strategy-aware data collection) can
often be seen as a form of confounder. Some existing work addresses this through backdoor
adjustment. Conformity bias, on the other hand, can be conceptualized as a collider
effect.

— Data augmentation and data denoising with causal inference. The dual challenge
of data missing encompasses both limited user-data collection and the recommendation
model’s causal effect on the system. The extreme form of the first challenge can even lead to
data noise. For the first challenge, counterfactual reasoning can be employed to generate the
uncollected data as augmentation, thus addressing the data-missing problem. For the latter,
causal models like IPW can be utilized to estimate the causal impact of recommendation
models.

— Achieving explainability, diversity, and fairness via interpretable and controllable
recommendation models using causal inference. Models crafted in alignment with
the causal graph are intrinsically controllable. Some notable techniques in this regard
encompass causal discovery and disentangled representations. Leveraging the interpretable
model, high diversity can be realized by manipulating the model to sidestep the tradeoff,
and fair recommendations can be secured by steering the model to ensure fairness across
specific user demographics.

It is worth mentioning that although there are surveys on either recommender sys-
tems [25, 113, 134] or causal inference [26, 63, 63, 129], there is no existing survey fully
discussing this new and important area of causality-driven recommender systems. Note that there
is a very short article (8 pages) [116] trying to survey existing work of causal-inspired recommen-
dation methods, but it only discusses a few of representative articles due to its page limit. These
surveys on recommender systems mainly introduce and discuss the basic concepts and various ad-
vances of recommender systems, with only a few discussions on causality-based recommendation.
On the other hand, surveys of causal inference primarily introduce and discuss the basic concepts
and fundamental methods of causal inference, lacking sufficient discussions on applications.

There is a survey [10] about bias and debias in recommender system and we would discuss
its relations with our survey as follows. First, the survey [10] concentrates on the bias issue in
recommendations and describes how various works address these issues. Among these, causal
inference-based methods represent just one segment, with numerous other methods available
for tackling bias. Similarly, our survey underscores that while using causal inference to address
data bias is a significant component, it is merely a portion of our broader theme: causal inference
for recommender systems. Hence, even though some overlap exists between the two surveys,
it is small due to the distinct focal topics. Second, when considering the shared part, the two
surveys adopt different manners to discuss existing works. Our survey places greater emphasis
on the causal inference technique itself, its ties to conventional causal inference methods, and its
relevance to other challenges, such as data missing and data noise. In contrast, the bias survey [10]
delves deeper into the intricacies of biases (types, origins, etc.) and elaborates on how causal
inference-based methods differentiate themselves from other kinds of methods.

We summarize the contribution of this survey as follows:

— To the best of our knowledge, we take the pioneering step to give a systematic survey of this
new yet promising area. We categorize the existing work by answering the fundamental
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Fig. 3. Important concepts of causal inference.

question of why the causal inference is needed and how causal inference enhances recommen-
dation.

— We first provide the necessary knowledge of recommender systems and causal inference.
Subsequently, we introduce and explain the existing work of causal inference for recom-
mendation, from the early attempts to the recently-published articles until 2023.

— We discuss important yet unresolved problems in this research area and propose promising
directions, which we believe will be the mainstream research direction of the next few
years.

2 BACKGROUND

As a survey of the interdisciplinary area of causal inference and recommender systems, we first
introduce the background knowledge and fundamental concepts of these two topics.

2.1 Causal Inference

We introduce the fundamental concepts of causal inference to facilitate the readers’ understanding.
This involves two representative causal frameworks: SCMs proposed by Pearl et al. [71] and the
potential outcome framework developed by Rubin et al. [76]. Considering the topic of this survey,
we will elaborate on the core concepts using examples from recommender systems for clearer
understanding. The basic concepts are shown in Figure 2 and Figure 3, which we will explain in
detail in the following sections.
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2.1.1  Structural Causal Models. Generally, SCMs abstract the causal relationships between vari-
ables into causal graphs, build structural functions, and then conduct causal inference to estimate
the effects of interactions or counterfactuals [71].

Causal Models. Causal models involve two essential concepts: causal graphs and structural
functions. Specifically, a causal graph describes the causal relationships via a Directed Acyclic
Graph (DAG), in which the nodes denote variables and the edges indicate causal relationships.
According to a causal graph, structural functions are used to model the relationships. For each
variable, one structural function calculates its value based on its parent nodes.

Three Typical DAGs. As shown in Figure 2, there are three classic structures in causal graphs:
chain, fork, and collider, for each of which we give an example of recommender systems. In the
chain structure, X affects Y via the mediator Z. For example, in Figure 2(a), the user features affect
the user preferences, and the user preferences affect the users’ click behavior. Besides, in the fork
structure, Z is a confounder, affecting both X and Y. For example, as shown in Figure 2(b), an
item’s quality can affect both its price and users’ preferences toward it. In such a fork structure,
Z is defined as confounder variable. Roughly ignoring confounder Z leads to spurious correlation
between X and Y. That is, products with higher prices may have larger sales on an e-commerce
platform, which does not mean users prefer to spend much money. In Figure 2(c), differently, Z
represents a collider, which is affected by X and Z. For example, the users’ click behavior is affected
by user preference and item popularity. Conditioning on Y will lead to correct correlation between
X and Z. That is, users’ behaviors on two items with the same popularity level are only affected
by their preferences.

Intervention. Given the causal graph, a basic concept of intervention can be formally defined.
Specifically, the intervention on a variable X is formulated with do-calculus, do(X = x) [71], which
blocks the effect of X’s parents and set the value of X as x. For example, do(X = x) in Figure 2(b)
will rule out the path Z — X and force X to be x [72]. That is, in our above-mentioned example,
we set the item prices to a specific value.

Counterfactual. Another important concept is the counterfactual, which contrasts with the
factual. It is used to address scenarios where the treatment variable’s value settings do not occur
in the real world. In other words, counterfactual inference estimates what the outcome would
have been if the treatment variable had taken on a different value compared to its observed value
in the real world [71]. For example, a bankrupted seller might wonder about potential sales in a
counterfactual world where he/she had purchased advertisement services, setting the treatment
variable Tif 545 = 1.

2.1.2  Potential Outcome Framework. The potential outcome framework [76] is another widely-
used causal inference framework besides the structural causal model [71]. It estimates the causal
effect of a treatment variable on an outcome variable without the need for a causal graph.

Potential Outcome [76]. Given the treatment variable T and the outcome variable Y, the po-
tential outcome Y/ denotes the value of Y under the treatment T = ¢ for individual i. In the factual
world, we can only observe the potential outcome of Y under one treatment for each individual.

Treatment Effect [76]. Given binary treatments T = 0 or 1, the Individual Treatment Effect
(ITE) for an individual i is defined as Y/ — Y. However, ITE is impossible to calculate since we
can only observe one potential outcome. Hence, ITE is extended to Average Treatment Effect
(ATE) over a population. For a population i = {1,2,..., N}, ATE is calculated by E; [Yf - Yol] =
% Zf\il (Yf - Yol)-

Discussions about these two frameworks. We briefly summarize the similarities and dif-
ferences between the two frameworks. As stated by Pearl [70], the two frameworks are logically
equivalent. The theorem and assumptions in one framework can be equivalently translated into
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the language of the other framework. However, the key difference is that the potential outcome
framework neither considers the causal graph to describe causal relationships nor conducts rea-
soning over the graph to estimate causal effects.

2.1.3 Causal Effect Estimation and Causal Discovery. For estimating the causal effect, one
golden rule is to conduct randomized experiments. Since individuals are divided into the treatment
group and the control group randomly, there are no unobserved confounders. Under randomized
experiments, some favorable properties of causal inference are guaranteed, such as covariate bal-
ance and exchangeability. Meanwhile, the causal effect can be estimated directly by comparing the
two groups. For example, online A/B testing can be regarded as a kind of randomized experiment
that divides users randomly into several groups and can obtain trustworthy evaluation results of
recommendation performance.

However, randomized experiments can be expensive and sometimes impossible to conduct. For
example, in recommender systems, experiments generating randomized recommendations can
detrimentally affect user experiences and the platform’s profitability. Therefore, estimating the
causal effect solely from observational data becomes critical. In general, a causal estimand is first
transformed into a statistical estimand with a causal model like SCM. Then the statistical esti-
mand is estimated with observed data. In other words, with the defined causal model, we can
discern causal effects and non-causal effects, such as confounding associations between treatment
and outcome. Subsequently, the causal effect is extrapolated by estimation using observed data in
alignment with the identified causal mechanisms.

One classical method is backdoor adjustment [71]. We say a set of variables W satisfies back-
door criterion if W contain no descendant of T and W can block backdoor paths (which has arrow
into T rather than from T) between T and Y. The causal effect of T on Y then can be obtained with
backdoor adjustment as follows:

P(y | do()) = > P(y | t,w)P(w), (1)

where w € W and the total causal effect is the weighted sum of the conditioned causal effect.

The above backdoor adjustment can address observed confounders, but not unobserved con-
founders, where frontdoor adjustment [71] comes to help. We say a set of variables M satisfies
frontdoor criterion if all the causal paths from treatment variable T to the outcome variable Y are
through M, and there is no unblocked backdoor path from T to M, as well as M to Y when condi-
tioned on T. The causal effect of T on Y then can be obtained with frontdoor adjustment as follows:

Py | do()) = Y P(m | 1) ) Py | m,t)P(t), @)

where possible unobserved confounders are addressed.

With the sufficient adjustment set of variables W in the high dimension, it is difficult to directly
estimate the causal effect as the positivity property is hard to satisty. Instead of modeling the whole
set W, we can turn to the propensity score as follows:

eW)=P(T=1|W), ®3)
which indicates the probability of receiving the treatment given W. Then the causal effect can be

estimated by inverse propensity weighting (IPW) [35] on the treatment and control group as

follows:
1 ; 1 Z ;

e en) o o, T )
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All of the above causal effect estimations assume that we already have a causal graph. However,
in the real world, we often lack prior knowledge about the causal relationships in collected data.
This limitation gives rise to the problem of causal discovery, where the objective is to construct
a causal graph from the existing data of a set of variables. Traditional approaches identify causal
relations through conditional independence tests, bolstered by additional assumptions such as
faithfulness [93]. Score-based algorithms [34, 87] have been also proposed to relax the strict
assumptions for causal discovery. These methods utilize a score function to measure the quality
of the discovered causal graph in comparison with observed data. Recently, various machine
learning approaches have been developed to discover causal relations from large-scale data. For
example, Zhu et al. [142] utilize reinforcement learning method to find an optimal DAG with
respect to a scoring function and penalties on acyclicity. There is a survey [26] fully discusses
different methods of causal discovery.

To summarize it, we have introduced the fundamental knowledge of causal inference, includ-
ing two basic frameworks and two important research topics, causal effect estimation, and causal
discovery.

2.2 Recommender System

2.2.1 Overview. As an approach to information filtering, the recommender system has been
widely deployed on various platforms in recent decades, such as TikTok, YouTube, X (formerly
known as Twitter), and so on. In general, the modeling of user preferences based on historical
interactions is the key point for the recommendation algorithm, and users’ future interactions
are further predicted. In this way, the necessary data input of a recommendation task includes
the records of user-item interactions, and the output is a model that can generate the interaction
likelihood of a given user-item pair. This procedure can be formulated as

Input:Y € RIUXILT

; 5)
Output : f(-,-),(u,i) > R,

where U and 7 denotes the user set and item set, respectively. y,, » = 1 if user ¥’ € U has

interacted with item i’ € 7 if not, y,/» = 0; here the function f(:, -) denotes the recommendation

model. Furthermore, with different input data, there are two primary families of models in rec-
ommendation, i.e., CF and CTR prediction. Despite the vanilla CF which only considers user-item
interaction data, some recommendation tasks enhance the behavioral data with auxiliary data,
such as social network in social recommendation [18, 115], behavioral sequences in sequential
recommendation [8, 143], multiple-type behaviors in multi-behavior recommendation [41, 136],
multi-domain user behaviors in cross-domain recommendation [20, 37], and so on. For CTR
prediction problem, user and item features such as user profiles (occupation, age) and item
attributes (category, brand) are also considered as input. The mainstream works of CTR pre-
diction focus on extracting high-order cross-features with attention-based neural network [24],
attention-based neural network [24], self-attentive layers [91], and so on.

2.2.2  Recommendation Model Design. Here we present two folds of design of recommendation
models, collaborative filtering and click-through rate prediction.

Collaborative Filtering. Following the development process, existing CF models can be cate-
gorized into three types, including MF-based, neural network (NN)-based, and graph neural
network (GNN)-based. The standard way of modeling is to represent users and items with latent
vectors, i.e., embeddings. With user embedding matrix P € R¥I“| and item embedding matrix
Qe R4 in which d denotes embedding dimension, the interaction likelihood of (u, i) will be
the similarity of corresponding embeddings p, and q;.
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— MF [47]. The similarity function is the inner product as follows:

s(u, i) = Py Q. (6)
— NCF [31]. In order to incorporate the capability of modeling non-linearity, NCF generalized
the similarity function and introduced the multi-layer perceptron (MLP) as follows:

stw.i) = b7 (p§ 097 ) + ¢ (1p.q).
pu = [Py pu ] i = [47. 4],
where p&,p) (q¢, qM) denotes the user (item) embedding for MF and MLP parts respec-
tively, [-, -] indicates the concatenation operation, © indicates the Hadamard product, h is
the weight vector, and ¢(-) denotes MLP.

— NGCEF [106]. This GNN-based recommendation model conducts multiple layers of message
passing on the user-item bipartite graph. Formally, the similarity is calculated as follows:

p., = Agg (qﬁ’lli € Nu) .q; = Agg (pffllu € Ni) :

s, = ([0 pE1) [als- o atD,

where p!, = p,,q = q;, and [ indicates the propagation layer, N, refers to the set of
interacted items of user u, and N; indicates the set of those users who have interacted with
item i. Here Agg(-) is the aggregation function for collecting neighborhood information.
In this way, high-order user-item connectivity is injected into the similarity measurement
between nodes.

(7)

®)

Click-Through Rate Prediction. As introduced above, the unified procedure of CTR prediction
is extracting high-order features. The input features are denoted as follows:

Xu,i = [XL,IW-"?XLV,II']’ (9)
where M denotes the number of feature fields. Furthermore, the raw features will be transformed
into embeddings as follows:

Vﬁ’i =kaﬁ’i,k= 1,..., M, (10)
where V& € R¥“*XI7*| ig the feature embedding matrix, k is the set of optional features, d* is the
dimension of embeddings, and k denotes the order of feature field. In general, there are two fields
of users’ and items’ identity, supposed to be the first two ones, then V! = P and V? = Q. In terms
of the mapping function, it can be represented as follows:

s(u, i) =g([vlll’i,...,vﬁ/’[i]) . (11)

The design of g(-) will introduce a module of feature interaction learning, via the inner product
in FM [74], multi-layer perceptions in DeepFM [24], stacked self-attention layers in Autolnt [91],
and so on.

2.2.3 Objective Function. The primary objective functions for optimization utilized in recom-
mendation models are in two categories, i.e., point-wise and pair-wise. Specifically, the point-wise
objective function focuses on the prediction of a user-item interaction of which the widely-used
Logloss function is as follows:

1 s A
L=-7 Z Yu,i 10g(Ju,1) + (1 = yu,i) log(1 = Ju,1), (12)
|O| (u,i)e0

where ¢, ; = s(u, i) and O is the training set.
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Fig. 4. lllustration of three typical issues of non-causality recommendation models and how causal inference
addresses them.

In terms of the pair-wise objective function, it encourages a larger disparity between posi-
tive (y,,; = 1) and negative (y,; = 0) samples, and the widely-used BPR loss function [75] is
as follows:

1 N N
L=—— > 108 0(Gu,i = Ju.j); (13)
el .~
(u,1,/)€Q, Ju, i > Y, j

where o(-) denotes the sigmoid function, and Q denotes the training set.

3 WHY CAUSAL INFERENCE IS NEEDED FOR RECOMMENDER SYSTEMS

In this section, we will discuss the essentiality and benefits of introducing causal inference into
recommender systems from three aspects, illustrated in Figure 4.

3.1 The Issues of Data Bias in Recommender Systems

3.1.1  Data Bias in Recommender Systems. Data bias refers to the uneven distribution of recom-
mendation data that does not faithfully reflect user preference. Generally, there are two main types
of data bias in recommendation over interactions and attributes.

Bias over interactions. Historical user-item interactions collected from previous recommen-
dation strategies are typically treated as labels for recommender model training. Sometimes,
historical interactions follow a highly skewed distribution over items (a.k.a. long-tail distribution),
resulting in models over-recommend popular items, i.e, popularity bias [111, 138]. Further-
more, the historical interactions of a user also exhibit uneven distributions over item categories.
Consequently, recommender models will blindly assign high scores to items from the frequent
category, ignoring the user preference over the remaining categories [102]. Worse still, such
biases will be amplified in the feedback loop, leading to notorious issues like unfairness and the
filter bubble. Conformity bias refers to the fact that users’ behaviors are determined by not
only user preferences but also conformity, making the collected data biased. It is a common issue
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in social-aware information systems, such as the user-post interaction behavior on Facebook.!
Exposure bias is another widely-concerned bias, which refers to that the exposure algorithms
will highly influence the data collection of user feedback.

Bias over attributes. Item attributes that can directly result in interactions, especially
clicks, can also mislead the estimation of user preference. Training over historical interactions
will inevitably push the model to highlight such attributes, leading to shortcuts. Taking video
recommendation as an example, videos with attractive titles or cover images are more likely
to be clicked, while the user may not like the content [103]. Undeniably, the shortcuts of such
item attributes will lead to recommendations failing to satisfy user preference. Worse still, they
also make the recommender system vulnerable to relevant attacks, e.g., the item producer
intentionally leverages such features.

3.1.2  The Necessity of Causal Inference for Data Debiasing. Causal theory enables us to identify
the root cause of data bias by scrutinizing the generation procedure of recommendation data and
mitigating the impact of bias through causal recommendation modeling.

Causal view of data bias. The main source of bias effect in recommendation is the backdoor
path (Figure 2(b)), where a confounder (Z) simultaneously affects the inputs (X) and interactions
(Y). Due to the existence of the backdoor path, directly estimating the correlation between X
and Y will suffer from spurious correlations, leading to a recommendation score higher than X
deserved. For instance, item popularity affects the exposure probability of an item in a previous
recommendation strategy and interaction probability due to user conformity. Due to ignoring
item popularity, CF methods will assign higher scores to items with higher exposure in previous
recommendation strategies, leading to over-recommendation, i.e., popularity bias. In the causal
terminology, this type of bias effect is termed as confounding bias. Beyond confounding bias,
another source of bias in recommendation is the gap between the observed interactions and true
user preference matching. Some item attributes directly affect the status of interactions.

Causal recommendation modeling. The key to eliminating bias effects lies in modeling the
causal effect of X on Y instead of the correlation between them. In causal language, it means
viewing X and Y as treatment and outcome variables, respectively. The causal effect denotes to
what extent Y changes according to X i.e., the changes of Y when forcibly changing the value of X
from a reference status to the observed value. To estimate such a causal effect, it is thus essential to
incorporate conventional causal inference techniques into recommender models. Consider video
recommendations on platforms like YouTube and Netflix. Here, X represents user preference while
Y symbolizes users’ click behaviors. In an ideal setting, users’ click behaviors should be directly
influenced by their preferences. However, at times, external factors like an enticing video cover
(represented by Z) might introduce bias.

3.2 The Issues of Data Missing and Data Noise in Recommender Systems

3.2.1 Data Missing in Recommender Systems. The data utilized in recommender systems is
typically limited, which cannot cover all possible user-item feedback. For example, a user has
only rated a small ratio of clicked movies; or the user purchasing the camera is not recorded
as having bought a camera lens and a roll film, which is intuitively reasonable. Therefore,
the obtained data cannot fully represent the users’ interest, leading to sub-optimal results for
existing recommendation methods. First, the interaction data observed is constrained by the
already-deployed recommendation policy of the recommender system [78]. Users can only
interact with specific items if these items are exposed to them, which strongly correlates with

https://facebook.com
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the recommender system’s intrinsic strategy. In addition, users may refuse to give feedback [107].
For example, on movie rating websites such as IMDB or Douban,? users may only rate a few of
the movies they have watched. Under this condition, it becomes more challenging to model users’
interests. Besides, features of users and items can also be missing in real-world recommender
systems due to the high cost of feature collection.

3.2.2  The Necessity of Causal Inference for Data Missing. Some earlier approaches [85, 94, 98]
without causal inference were developed to address the data-missing problem. Steck [94] computes
prediction errors for missing ratings. Schnabel et al. and Thomas et al. [85, 98] consider weights for
each observed rating based on the probability of collecting that record. However, these methods
are limited by low accuracy and poor generalization ability. Causal inference actually provides
the causal descriptions of how data is generated, which can serve as prior knowledge to data-
driven models. As a result, the negative impact of data-missing issues can be alleviated, improving
accuracy and generalization ability.

3.2.3 Data Noise in Recommender Systems. The recommender systems highly rely on the his-
torical user-item interaction feedback to model users’ preferences and predict the interaction prob-
ability between the user and the unseen item; thus, the reliability of collected data is the basis of the
effectiveness of recommender systems. However, the data collected in the real world may be noisy,
i.e., incorrect. It is hard to detect and eliminate noisy interactions in traditional recommendation
methods. Mahony et al. [65] classified data noise into two categories: natural noises and malicious
noises. Natural noise relates to the noise generated during the data-collection procedure by recom-
mender systems, and malicious noise denotes the noise being deliberately inserted into the system.

As for the natural noise, Li et al. [51] discussed various reasons that lead to the noisy data in
recommender systems. The major reasons include the inaccurate impression of the users themself
and the error in data collection. Jones et al. [43] points out that users can hardly accurately measure
their preferences, thus leading to mismatch between their preferences and final ratings. Cosley et
al. [14] found that noisy data arises when users map their opinions into discrete ratings. Zhang
et al. [137] argued that in some streaming applications, the conversion events may be delayed to
the time when data is collected. Thus the feedback of users may have not yet occurred, resulting
in a large number of incompletely labeled instances and introducing noise to data. Some existing
work [38, 60, 101, 112] also pointed out the difference between the implicit feedback and users’
actual satisfaction because of noisy interactions. For example, in E-Commerce, many clicks do not
lead to purchases, and a large portion of purchases finally get negative comments. Implicit interac-
tion data widely used in recommender systems nowadays is easy to become noisy because of the
inaccurate first impression of users. Since users are exposed to a flood of information in today’s on-
line services, users are very likely to have accidentally triggered feedback such as click-by-mistake.

As for the malicious noise, it is produced by adversary attackers of recommender systems. For
instance, on user-generated platforms such as TikTok,® some authors will create plenty of new
accounts to rate their work with high scores, trying to earn over-exposure opportunities. In e-
commerce websites such as Amazon, some adversary sellers may generate fake order records or
positive comments on their products.

3.24 The Necessity of Causal Inference for Data Denoising. Many previous works have
experimentally demonstrated the severity of data noise and its negative effects on recommender
systems. Cosley et al. [14] showed that only 60% of users will keep their rating to the same movie
when they are asked to re-rate for it. Further experiments show that statistically significant

Zhttps://www.douban.com
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MAE differences arise when exploiting CF models on the original rating data and new rating
data. Amatriain et al. [3] showed that the recommendation performance will be significantly
affected under noisy data compared to the noiseless data, with a difference of RMSE of about 40%.
Wang et al. [101] found through experiments on two representative datasets the performance of
recommender system trained by noisy data experienced a performance drop of 9.56%-21.81% w.r.t.
Recall@20 and drop of 3.92%-8.81% w.r.t. NDCG@20, compared with the recommender system
trained over cleaned data. Although existing work has confirmed the widespread existence of data
noise, which reveals that we need to consider its impact during training recommendation models,
existing solutions are a few. Data noise can arise from various sources, such as limitations in data
collection (e.g., inaccurate values in users’ questionnaire data) or during data preprocessing (e.g.,
crudely transforming feedback into simplified values, like converting continuous user watching
durations into discrete positive/negative labels). Such noises present significant challenges in
accurately discerning user preferences. Leveraging causal inference allows us to more effectively
detect the presence of noise in interaction data or bridge the disparity between noisy training
data and the expected clean testing data with the help of counterfactual learning and reasoning.

3.3 Beyond-accuracy Concerns in Recommender Systems

Traditional recommender systems are designed toward the major goal of achieving higher accu-
racy, i.e., click-through rate or conversion ratio, serving for the platform benefit. Nevertheless, as
recommender systems have become fundamental information services in more and more aspects
of daily life, these concerns are not just technical problems but also social challenges.

3.3.1  Explainability. The requirement of explainability for recommender systems refers to the
need that we should understand why some items are recommended while others are not. It helps
build a bridge between users and recommendation lists for better transparency and trustworthi-
ness. Specifically, it can be divided into two categories, explainable recommendation model and
explainable recommendation results. Some existing work [11, 100, 139] mainly took some item as-
pects to give explanations, which is concluded as the aspect-aware explainable recommendation.
For example, Wang et al. [100] learned users’ preferences on given aspects by factorization method
to get the aspect-aware explanations.

The necessity of causal inference. Despite their effectiveness to some extent, existing meth-
ods of explainable recommendation are still limited [96]. Specifically, the explanation is built on
correlation. As mentioned above, roughly extracting correlations from the observed data without
the support of causal inference may lead to wrong conclusions. Furthermore, the explanations
of the recommendation model require building explicit causal relations between the components
of the recommendation model and the prediction scores. Additionally, the explanation for recom-
mendation results should fully consider how different decision-factors, i.e., cause, lead to users’
behaviors, i.e., effect. Thus, achieving explainability is tightly connected to causal inference.

3.3.2 Diversity and Filter Bubble. Filter bubble describes the phenomenon where people tend to
be isolated from diverse content and information by online personalization [66]. As a consequence,
users are placed in a fixed environment where they can only encounter similar topics or informa-
tion. Passe et al. [68] attribute this effect to homogenization, which means people’s behavior and
interest show consistency and convergence.

The recommender system is one of the main causes of the filter bubble due to the principle
of generating recommendation lists by learning the similarity between users or items [67],
which inevitably leads to homogeneous recommendations. Gabriel Machado Lunardi et al. [61]
empirically analyzed the filter-bubble formation based on popular CF methods and algorithms
for diversified recommendation. In terms of human nature, researchers found that people tend to
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pursue a comfort zone and stay with the opinions they are interested in or agree with [6]. In the
long term, the filter bubble will narrow people’s views and radicalize their ideas. Thus, it is an
urgent problem to break filter bubbles and improve recommendation heterogeneity.

The necessity of causal inference. The biased feedback loop is one of the most critical chal-
lenges in addressing the filter bubble, as learning from biased data will exacerbate the homogeneity
in recommendation exposure and further bias the collected data. Moreover, the accuracy-diversity
dilemma is another challenge, which refers to the phenomenon where pursuing accuracy will
lead to low diversity. Causal inference provides the opportunity to address these challenges. First,
causal inference can alleviate the bias or missing data in collected data, supporting the exploration
of unseen data. Second, the causal inference-enhanced model can utilize the causal relationships
under user behaviors, understanding why users consume certain items. This can help recommend
items outside the existing categories and meet user demands.

3.3.3  Fairness. Recently, the fairness of recommendations has gained significant attention. As
we know, recommender systems operate as multi-stakeholder platforms, thus encompassing vari-
ous aspects of fairness concerns, including both user-side and item-side [7].

The user-side fairness issue arises from the diverse fairness concerns among users. For instance,
while some users may be predominantly worried about potential biases based on their gender,
others might be more concerned about age-related biases [54]. To foster trust in the recommender
system, it’s essential to address these user-side fairness concerns in a personalized manner. While
some approaches [28] have attempted to rectify these fairness challenges using association-based
methods—aimed at eliminating statistical metric discrepancies between groups-research has
shown these methods to be inadequate and lacking in certain areas [45, 48]. Notably, these
association-based techniques often overlook the intricate relationship between objective features
and model outputs. Conversely, a few studies have explored fairness through a causal lens,
offering insights into how output variables evolve with changes in input [1, 44].

Item-side fairness, on the other hand, evaluates the equity in treatment of each item during
the recommendation process. Biases may emerge due to the oversight of particular items or their
attributes. Several existing solutions [23, 86] have ventured into unbiased learning or heuristic
ranking adjustments to rectify these biases.

The necessity of causal inference. Tackling fairness issues is akin to hypothesizing in a coun-
terfactual realm: Had a user not been part of a specific group, or had an item lacked a certain
feature, would the recommendation outcomes remain unchanged? If not, what would these al-
tered recommendations look like? This difference between the counterfactual and factual worlds
forms the cornerstone of fairness evaluation in recommender systems. Hence, methods grounded
in causal inference, particularly those employing counterfactual reasoning, offer a fresh and more
comprehensive approach to enhancing recommendation fairness compared to their non-causal
counterparts.

In short, we have systematically discussed the limitations of existing recommender systems and
why causal inference is essential to address these limitations. In the following, we will introduce
how these challenges can be addressed (at least partially addressed) by presenting the recent
advances in the causality-enhanced recommendation.

4 TECHNICAL DETAILS OF EXISTING WORKS OF CAUSAL INFERENCE-BASED
RECOMMENDER SYSTEMS

The existing work of causal inference for recommendation is presented based on the three ma-
jor issues of recommendation models with only correlation considered. The overall illustration is
presented in Figure 5, and the details are introduced one by one as follows.
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Fig. 5. lllustration of existing work of causal inference for recommendation.

4.1 Causal Inference-based Recommendation for Addressing Data Bias

Existing methods on causal debiasing are mainly in three categories: confounding effect, colliding
effect, and counterfactual inference.

4.1.1 Confounding Effect. In most cases, biases are caused by confounders, which lead to con-
founding effect in correlations estimated from the observations. To eliminate the confounding
effect, there are mainly two lines of research regarding the causal inference frameworks adopted.

Structural Causal Model. Using SCM to eliminate confounding effect falls into two categories:
backdoor and frontdoor adjustments. Backdoor adjustment is able to remove the correlations by
blocking the effect of the observed confounders on the treatment variables. To address the data
bias in recommender systems, the existing work usually inspects the causal relationships in the
data generation procedure, identifies the confounders, and then utilizes backdoor adjustment
to estimate causal effect instead of correlation. Specifically, backdoor adjustment blocks the
effect of confounders on the treatment variables by intervention [71], which forcibly adjusts the
distribution of treatment variables and cuts off the backdoor path from treatment variables to
outcome variables via confounders.

For example, Zhang et al. [138] ascribed popularity bias to the confounding of item popularity,
which affects both the item exposure and observed interactions. They then introduced backdoor
adjustment to remove the confounding popularity bias during model training, and incorporated
an inference strategy to mitigate popularity bias. Besides, Wang et al. [102] explored the bias
amplification issue of recommender systems, i.e., over-recommending some majority item cat-
egories in users’ historical interactions. For instance, recommender systems tend to recommend
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Table 1. Representative Methods that Utilize Causal Inference to Address Data Bias

Category Model Causal-inference Method | Venue | Year
Popularity Bias PD [138] Backdoor Adjustment SIGIR | 2021
MACR [111] Counterfactual Inference KDD | 2021

Clickbait Bias CR [103] Counterfactual Inference SIGIR | 2021
Bias Amplification DecRS [102] Backdoor Adjustment KDD | 2021
Conformity Bias DICE [141] Disentangled Causal Embeddings | WWW | 2021
Unknown Bias RD [16] Doubly-Robust KDD | 2022
General Feature Bias DCR[32] Backdoor Adjustment TOIS | 2023
IPS [86] IPW ICML | 2016

MEF-DR-]JL [107] DR ICML | 2019

Multi-IPW/DR [135] IPW, DR WWW | 2020

Rel-MF [81] IPW WSDM | 2020

. DR [79] DR RecSys | 2020

Exposure Bias MRDR [27] DR SIGI}I; 2021
LTD [108] RCT, DR SIGIR | 2021

AutoDebias [9] RCT SIGIR | 2021

USR [109] IPW WWW | 2022

DENC [52] IPW TKDD | 2023

more action movies to users if they have interacted with a large proportion of action movies
before. To tackle this, Wang et al. [102] found that the imbalanced distribution of item categories
is actually a confounder, affecting user representation and the interaction probability. Next, the
authors proposed an approximation operator for backdoor adjustment, which can help alleviate
the bias amplification.

However, the assumption of observed confounders might be infeasible in recommendation sce-
narios. To tackle the unobserved confounders (e.g., the temperature when users interact with
items), frontdoor adjustment is a default choice [71]. Xu et al. [125] has made some initial at-
tempts to address both global and personalized confounders via frontdoor adjustment. Zhu et al.
[144] gave a more detailed analysis of the conditions to apply the frontdoor adjustment in recom-
mendation. Liu et al. [58] approached the selection bias challenge and proposed counterfactual
learning-based method. Specifically, the authors focus on policy learning approaches for top-K
recommendations in extensive item spaces, identifying key challenges like importance weight ex-
plosion and observation scarcity. A novel framework is introduced for efficient policy learning that
addresses these complexities. Ding et al. [16] emphasizes the challenge of unmeasured confounders
in recommender systems which can influence the accuracy of feedback predictions. The authors
proposed Robust Deconfounder (RD) to consider the effects of these unmeasured confounders
on propensities, using a bounded effect approach.

Potential Outcome Framework. From the perspective of the potential outcome framework,
the target is formulated as an unbiased learning objective for estimating a recommender model.
Let O°¢ denote the exposure operation where 0, ; = 1 means item i is recommended to user u. The
set O is defined as the exposure results under the given exposure strategy (with O¢). According to
the definition of IPW [56], we can learn a recommender to estimate the causal effect of X on Y by
minimizing the following objective,

L l(yu;i,gu,i)’ (14)
01 o Pui
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where [(-) denotes a recommendation loss and p,, ; denotes the propensity, i.e., the probability of
observing the user-item feedback y, ;. As one of the initial attempts, Tobias et al. [86] adopted
this objective to learn unbiased matrix factorization models where the propensity is estimated by
a separately learned propensity model (logistic regression model). Beyond such shallow modeling
of propensity [81], Zhang et al. integrated the learning of propensity model and recommendation
model into a multi-task learning framework [135], which demonstrates advantages over the sep-
arately learned one. Wang et al. [109] took the pioneering step of considering the exposure bias
in the sequential recommendation, by proposing an IPW-based method named USR for alleviating
the confounder in sequential behaviors.

Nevertheless, estimating the proper propensity score is non-trivial and typically suffers from
high variance. To address these issues, a line of research [27, 79, 107] pursues a doubly-robust
model estimator by augmenting Equation 14 with an error imputation model, which is formulated
as

1 Wi T i) = s
: Z (éu,i + Ou,l( (yu,lﬁye,l) eu,l) ’ (15)

where é,; is the output of the imputation model with user-item features as inputs. To learn the
parameter of the imputation model, a joint learning framework [107] optimizes:

1 (l(yu,i,gu,i) - éu,i)2

0] (u,) €0 Du,i

(16)

Undoubtedly, incorporating experimental data, i.e., interactions from randomized controlled
trial (RCT) such as random exposure, can enhance the doubly-robust estimator. In this light, a line
of research [9, 108] investigates data aggregation strategies, which largely focuses on tackling the
sparsity issue of experimental data since RCT is costly. Recently, Li et al. [52] considered that the
exposure bias is largely depends on the socially-connected users, and proposed IPS-based methods
with the auxiliary social network data.

Different with the existing works for specific kinds of bias, He et al. [32] studied how to ad-
dress general feature biases. This work identified a challenge in recommender systems where
some features, like video length, can bias user interaction data and misrepresent actual prefer-
ences. Approaching from a causal perspective, the study introduced the Deconfounding Causal
Recommendation (DCR) framework to address this bias. The DCR used backdoor adjustment
to counteract the effects of confounding features and combine it with the mixture-of-experts
(MoE) model architecture.

4.1.2  Colliding Effect. We can discover many collider structures (cf. Figure 2(c)) in the interac-
tion generation process by inspecting the causal relationships. A representative case is that many
different variables affect the observed interactions, such as user interests and conformity. Condi-
tioning on the collected user interactions will lead to the correlation between user interests and
conformity: an interaction caused by user conformity has a higher probability of being uninter-
ested. To mitigate the conformity bias, an existing work [141] disentangles the interest and con-
formity representations by training over cause-specific data, which improves the robustness and
interpretability of user representations.

4.1.3  Counterfactual Inference. Another SCM-based technique used for debiasing is counterfac-
tual inference. In some SCMs of recommender systems, two causes (user and item features) lead to
one effect (user behavior). If the user features or item features are significantly biased, this direct
path (which we inaccurately referred to as a “shortcut’ in our original version) can result in bi-
ased interaction learning, especially when other unbiased features take a more indirect route. The
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Table 2. Representative Methods that Utilize Causal Inference to Address Data Missing and Data Noise

(RecSys Refers to Recommender System and Cl Refers to Causal Inference)

Category Model RecSys Task CI Method Venue | Year
ULO [83] Collaborative Filtering Uplift, IPW RecSys | 2019

DLCE [84] Collaborative Filtering IPW RecSys | 2020

CauseRec [133] Sequential Counterfactual SIGIR | 2021

CASR [110] Sequential Counterfactual SIGIR | 2021

CF? [122] Feature-based Counterfactual CIKM | 2021

CPR [127] Collaborative Filtering SCM, Counterfactual | CIKM | 2021

Data Missing CBI [82] Collaborative Filtering Interleaving, IPW | RecSys | 2021
CausCF [121] Collaborative Filtering Uplift, RDD CIKM | 2021

DRIB [120] Collaborative Filtering Doubly-Robust, IPW | WSDM | 2022

COR [105] CTR Counterfactual WWW | 2022

CausPref [33] Collaborative Filtering Causal Discovery | WWW | 2022

ASCKG-CG [64] KG-based Counterfactual SIGIR | 2022

CIRS [22] Sequential Recommendation Counterfactual TOIS | 2023

Data Noise CBDF [137] Streaming Importance Sampling | SIGIR | 2021

counterfactual inference is able to estimate the path-specific causal effect and eliminate the causal
effect of partial user/item features. Specifically, it first imagines a counterfactual world without
these features along specific paths and then compares the factual and counterfactual worlds to
estimate the path-specific causal effect. For example, Wang et al. [103] conducted counterfactual
inference to remove the effect of exposure features (e.g., attractive titles) for mitigating clickbait is-
sues. In addition, Wei et al. [111] reduced the direct causal effect from the item node to the ranking
score to alleviate popularity bias. Furthermore, Xu et al. [123] proposed an adversarial component
to capture the counterfactual exposure mechanism and optimized the candidate model over the
worst-case scenario with a min-max game between two recommendation models.

4.2 Causal Inference-based Recommendation for Addressing Data Missing and Noise

Data collected from recommender systems are usually scarce due to limited user engagement
compared with the whole item candidate pool. In addition, the data can also be unreliable and
incorrect since the system may fail to collect the true reward within the tight time window for data
collection. Meanwhile, the real causal effect of recommendation is largely unknown since the data
of not recommending an item is unavailable. As a consequence, it is challenging for recommender
systems to capture user preferences accurately since they are trained with missing and noisy
data. Tools of causal inference can be leveraged to tackle the two problems by generating either
counterfactual data to augment insufficient training samples or counterfactual rewards to adjust
noisy data. Uplift modeling is utilized to measure the causal effect of recommendation. Table 2
provides a brief summary of recommender systems that utilize causal inference to address data
missing and data noise problems.

4.2.1 Causal Inference for Data Missing. Interactions between users and items are the factual
data, which expresses what really happens on the recommendation platforms and directly reflects
user interest. However, factual data is usually scarce; thus, it is insufficient for recommender sys-
tems to accurately capture the user interest hidden in the data. The natural idea is to generate more
samples that did not actually happen to augment the training data. Such data augmentation aims
to answer a question in counterfactual world: “what would ... if ..”, which has been adopted in
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Fig. 6. lllustration of counterfactual data augmentation for data missing.

several research fields like computer vision [19], and natural language processing [145]. In terms
of recommendation, counterfactual data augmentation aims to generate more interactions under
situations that are different from the real cases when the factual data is collected.

Existing approaches answer counterfactual questions for the following recommendation
scenarios,

— Collaborative Filtering (Top-N Recommendation). In this scenario, users are provided
with a ranked list of items, and they will interact with several items in the list. Data aug-
mentation generates the feedback of unseen recommendation lists; thus the counterfactual
question is “what would the given user’s feedback be if the system had provided a different
recommendation list?” [127].

— Sequential Recommendation. In this scenario, recommendation is made according to
the historical interaction sequences of users. In other words, interactions of the same user
are regarded as a sequence ordered by the timestamp of each interaction. Augmented
data are interaction sequences that do not exist in the real scenario. Therefore, the
counterfactual question is “what would users behave if their interaction sequences were
different?”[110, 133].

— Feature-based Recommendation. In this scenario, not only interactions but also features
such as user profiles and item attributes are available for recommendation. In other words,
user preference modeling can rely on the user/item features. The counterfactual question
that data augmentation aims to answer is “what would the given user’s feedback be if
his/her feature-level preference had been different?” [122].

For all the above three scenarios, counterfactual data augmentation follows a similar paradigm
of three steps, modeling, intervention, and inference. Figure 6 provides a brief illustration of coun-
terfactual data augmentation, and we will now introduce these three steps separately.

The modeling step captures the data generation process, which can be the recommendation
model itself or another separate model. Specifically, it is usually a parametric model that is trained
to fit factual data. In other words, given specific users and items that exist in factual data, the
model serves as a simulator that is trained with the observed interactions and later generates
unobserved interactions. For example, Yang et al. [127] first constructs a structural causal model
to express the process of recommendation and then implements the SCM with an inner product
between user and item embeddings. Xiong et al. [122] utilizes a multi-layer neural network that
takes feature vectors of users and items as input, then uses merging operators such as element-wise
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product or attention to fuse user and item feature-level properties. Zhang et al. [133] and Wang et
al. [110] propose model-agnostic counterfactual data augmentation thus the model can be off-the-
shelf sequential recommendation models. The simulator is trained with existing factual data just as
a normal recommendation task. After a well-trained simulator is obtained, the input is intervened
to be different from factual cases, and the simulator is used to produce the counterfactual outcome.
Gao [22] studied counterfactual interactive recommender system (CIRS), which combines
offline reinforcement learning with causal inference. The authors used a causal user model derived
from historical data to understand the overexposure effect on user satisfaction, with which model,
the RL policy can be better planned.

In the intervention step, the input is set as different values from the factual data. Specifically,
this step generates the counterfactual cases either by heuristic or another learning-based model.
Heuristic-based counterfactual intervention is usually achieved by randomization. In [110], a coun-
terfactual interaction sequence can be generated by replacing an item at a random index with a
random item. In [133], dispensable and indispensable items are replaced with random items to con-
struct counterfactual positive and negative sequences, respectively. In contrast, the learning-based
counterfactual intervention aims to construct more informative samples as data augmentation. In
other words, it generates counterfactual data with higher importance for model optimization. For
example, in [127], a counterfactual recommendation list is generated by selecting items with larger
loss value i.e., the hard samples. In [110] and [122], items and feature-level preferences that are
at the decision boundary are selected and then modified with minimal change to construct more
effective counterfactual interaction sequences and input features, respectively.

In the inference step, counterfactual outputs are generated with the above counterfactual in-
puts and simulator. This step which uses the simulator to simulate the output of the intervened
input, is usually straightforward. In [127], the counterfactual clicked items of the intervened rec-
ommendation list are generated by inferring according to the constructed SCM. In [133] and [110],
the intervened interaction sequences are fed into the sequential backbone model, and the obtained
outputs can directly serve as the counterfactual user embeddings [133], or they can be used to de-
rive counterfactual next items [110].

Wang et al. [105] further considered the problem of out-of-distribution recommendation, i.e., the
data in another distribution is missing. The authors proposed to use a variational auto-encoder to
help learn the user representations in the counterfactual distribution. Mu et al. [64] proposed to use
counterfactual generator to obtain user-item interaction data with the item’s specific relation on
the knowledge graph is changed. The counterfactual generator and recommender can be trained
jointly to enhance each other.

A recent work [33] approaches the issue of data-missing from another perspective, causal
discovery. Specifically, this work delves into the vulnerability of current recommender systems to
distribution shifts (the missing of IID data). The authors propose a novel causal preference-based
recommendation framework named CausPref, integrating a recommendation-specific DAG
learner. With emphasizing causal learning of invariant user preference and anti-preference
negative sampling, CausPref shows superiority and interpretability in varied OOD settings.

4.2.2  Causal Inference for Data Noise. Interactions can be noisy or incorrect due to the tight
time window of data collection. For example, users’ feedback can be delayed after the immediate
interaction, such as purchasing an item a few days after adding it to the shopping cart. In real-
time recommendation, these samples are used for model training before the complete reward is
observed. Therefore, the reward at an early time is noisy, and whether the item will be purchased
is unknown when it is added to the shopping cart. Zhang et al. [137] tackle the above problem
of delayed feedback with the help of causal inference. Specifically, the authors utilize importance
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sampling [5, 130] to re-weight the original reward and obtain the modified reward in counterfactual
world.

In addition, noisy user feedback can be alleviated by incorporating reliable feedback (e.g., rat-
ings). However, reliable feedback is usually sparse, leading to insufficient training samples. To
solve the sparsity issue, Wang et al. [101] contributed a colliding inference strategy, which lever-
ages the colliding effect [71] of reliable feedback on the predictions to facilitate the users with
sparse reliable feedback.

4.2.3 Causal Effect Estimation for Recommendation. The recommender systems impact data
collection, resulting in the absence of real interaction data, as mentioned above. Existing recom-
mendation approaches are primarily evaluated and trained using interaction data, where typically,
more interactions with recommended items indicate a more successful recommendation. However,
they overlook the fact that some items may be interacted with by users even without a recommen-
dation. Take e-commerce recommendation as an example: users may have clear intentions and
directly purchase the items they desire. On the contrary, some items are more effective in terms
of recommendation, meaning that users will purchase these items if recommended but won’t
purchase them if not recommended. Consequently, recommender systems boost the purchase
probability of these effective items, referred to as uplift. These items reflect a stronger causal effect
of recommendation, emphasizing the importance of recommending more items with a larger uplift.

Some studies [82-84, 121] in recent years investigated the causal effect of recommender sys-
tems from the perspective of uplift. Sato et al. [83] applied the potential outcome framework to
obtain the average treatment effect (ATE) of recommendation. Specifically, all the interactions
are divided into four categories according to the treatment (recommendation) and the effect (user
feedback), and then a sampling approach named ULO is proposed to learn the uplift of each sample.
IPW was adopted to achieve unbiased offline learning [84] and online evaluation [82] on the causal
effect estimation of recommendation. Xie et al. [121] proposed to estimate the uplift with tensor
factorization by regarding treatment as an extra embedding, and they use regression disconti-
nuity design (RDD) analysis to simulate randomized experiments. Xiao et al. [120] proposed a
doubly-robust estimator, along with which a deep variational information bottleneck method is
proposed to aid the adjustment of causal effect estimation.

Other studies view the causal effect of the recommendation algorithm as a problem related to
off-policy evaluation. In reinforcement learning, the policy determines how the agent behaves
(i.e., selecting the action) given the environmental context and the current states. In response, the
environment provides the corresponding reward [50]. However, due to high costs and limitations
in data collection, it is challenging to collect all possible rewards for every action. Consequently,
researchers have proposed off-policy evaluation, aiming to estimate these rewards [2, 77]. In the
context of recommendation, the items recommended can be viewed as the policy, and the off-
policy evaluation is understood as estimating the effect of the deployed algorithm. This is akin to
uplift modeling but focuses more on a general framework that estimates rewards using historical
data. To achieve off-policy evaluation, there are three major categories of estimators: model-based
estimators (reward regression), model-free estimators like propensity score-based methods, and
hybrid estimators using doubly robust methods [80]. Specifically, Swaminathan et al. [95] tackled
the problem of slate recommendation, where an ordered set of items is recommended. They built on
techniques from combinatorial bandits to estimate a policy’s performance using logged data. Li et
al. [53] addressed a similar issue, aiming to estimate the number of clicks for a recommendation
list. They introduced click models to construct estimators that learn with statistical efficiency,
and the results showed the superior performance of these constructed estimators. Mcinerney et
al. [62] studied sequential recommendation and introduced a new counterfactual estimator that
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Table 3. Representative Methods that Utilize Causal Inference to Achieve Beyond-Accuracy Objectives
(RecSys Refers to Recommender System and Cl Refers to Causal Inference)

Category Model RecSys Task CI Method Venue | Year
PGPR [118] |KG-enhanced Causal Discovery SIGIR | 2019

CountER [97] CF Counterfactual & Causal Discovery | CIKM | 2021

Explanability | MCT [99] CTR Couterfactual KDD | 2021
CLSR [140] Sequential Disentangled Embedding WWW | 2022

IV4Rec [90] CTR Decomposed Embeddings WWW | 2022

DecRS [102] CF Backdoor Adjustment KDD | 2021

Diversity UCRS [104] CTR Counterfactual SIGIR | 2022
OCCF [124] CF Backdoor Adjustment CIKM | 2022

Fairness CBDF [137] CTR Counterfactual SIGIR | 2021

accounts for sequential interactions in the rewards, achieving lower variance. Specifically, they
reweighted the rewards in the logging policy to approximate the expected sum of rewards under
the target policy. Kiyohara et al. [46] based their work on the assumption that users interact with
items sequentially, starting from the top position in a ranking, leading them to propose a Cascade
Doubly Robust estimator.

4.3 Beyond-accuracy RecSys with Causal Inference

As mentioned in Section 3.3, non-causal recommender systems may find themselves focusing
solely on improving accuracy, potentially overlooking other critical objectives such as explain-
ability, fairness, diversity, and more. In this section, we elaborate on how existing work addresses
this challenge by introducing causal inference into recommender systems.

4.3.1 Causal Inference for Explainable Recommendation. Causal inference naturally can im-
prove the explainability of recommendation, since it captures how different factors (cause) leads
to recommendation (effect) rather than only the correlations. To present the existing works, we
divide them into three categories as follows.

— Counterfactual learning. Tan et al. [97] proposed CountER for explainable recommendation
using counterfactual reasoning. CountER explained the recommendation by highlighting the
distinctions between factual and counterfactual scenarios. Specifically, CountER included an
optimization task with the goal of identifying an item that minimizes the difference to the
original item, thereby reversing the recommendation outcome in the counterfactual world.
CountER [97] also used causal discovery techniques to extract causal relations from histori-
cal interactions and the recommended items to enhance the explanation.

— Causal graph-guided representation learning. Zheng et al. [140] built a recommendation
model based on the causal graph. The authors pre-define the causal relationships that how
user behaviors (effect) are generated from users’ two parts of preferences (causes), long-term
preferences and short-term ones. Long-term preferences refer to those stable and intrinsic
interests, while short-term preferences refer to dynamic and temporary interests. The evo-
lution manner is also defined for these two kinds of preferences. Based on the pre-defined
causal relations, the authors proposed to assign two disentangled embeddings for two parts
of preferences, and the extracted self-supervised signals make the recommendation model
explainable. Si et al. [90] proposed to improve the recommendation model’s explainability by
decomposing model parameters into two parts: causal part and non-causal part. Specifically,
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it built a model-agnostic framework by using users’ search behaviors as an instrumental
variable.

— Causal discovery. Xian et al. [118] proposed to make use of a knowledge graph for explain-
able recommendation, and the paths in the knowledge graph can be used for generating
explanations. For example, the reason for purchasing AirPods may be that the user has
purchased an iPhone before, and iPhone, and AirPods are reachable in the knowledge graph
via relation has_brand and node Apple Brand. Based on the knowledge graph and users’
interaction history, the authors [118] proposed to extract causal relations by a reinforcement
learning method. Specifically, the policy function of reinforcement learning is optimized
to explicitly select items via paths in knowledge graph, ensuring high performance of
both accuracy and explanation. Tran et al. [99] approached the problem of explainable
job-skill recommendation. Specifically, it is essential to know which skill to learn to
meet the requirements of the job. The authors first proposed causal-discovery methods
based on different features with the employment-status label. Then the authors proposed
a counterfactual reasoning method that finds the most important feature, of which the
modification can lead to employment, which served as the explanations.

4.3.2  Causal Inference for Improving Diversity and Alleviating Filter Bubble. As mentioned ear-
lier, focusing solely on accuracy gives rise to the issue of overly homogeneous content, resulting in
the phenomenon known as the filter bubble. By leveraging causal inference, which aids in gaining
a deeper understanding and explicitly modeling the causal effects of user-decision factors, recom-
mendations with improved diversity and the reduction of the filter bubble can be achieved.

— Counterfactual learning. Wang et al. [104] proposed a causal inference framework to alleviate
the filter bubble with the help of user control. Specifically, the framework allows users’ active
control commands with different granularity to seek out-of-bubble contents. Furthermore,
the authors proposed a counterfactual learning method that generates new user embeddings
in the counterfactual world to remove user representations of out-of-date features. By con-
structing counterfactual representations, the recommendation can keep both accurate and
diverse.

— Backdoor Adjustment. Wang et al. [102] approached the problem of homogeneous recommen-
dation, by regarding imbalanced item distribution as a confounder between user embedding
and the prediction score. Specifically, the authors used the backdoor adjustment to block
the effect of the imbalanced item-category distribution in training data, partly alleviating
filter bubble. The proposed method is model agnostic and thus it can be adapted to differ-
ent recommendation models, including both collaborative filtering and click-through rate
prediction. Xu et al. [124] employed a causal graph with loops to represent the dynamic rec-
ommendation process which leads to the filter bubble. A Dynamic Causal Collaborative
Filtering (0CCF) model is proposed, which leverages back-door adjustment to estimate
post-intervention user preferences and employs counterfactual reasoning to alleviate the
echo chamber effect. Real-world dataset experiments validate the efficacy of the model in
mitigating echo chambers, while maintaining strong recommendation performance.

4.3.3 Causal Inference for Fairness in Recommendation. The concept of achieving fairness nat-
urally aligns with the counterfactual world in causal inference. For instance, when evaluating the
fairness of a recommender system for a specific user profile, one can pose a counterfactual question:
Would the recommendation results change if the user profile were altered? Li et al. [54] introduced
the notion of counterfactual fairness in recommendation, where modifying the value of a given
feature ensures that the distribution of recommendation probabilities remains unchanged. The
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authors address this issue by introducing personalized fairness criteria for users. The core idea
is to acquire user embeddings that are independent of specific features. To accomplish this, they
propose a filtering module positioned after the embedding layer, which eliminates information rel-
evant to sensitive features and generates filtered embeddings. Subsequently, the authors introduce
a prediction module that utilizes these filtered embeddings to predict sensitive features, employing
an adversarial learning approach in conjunction with the primary recommendation loss functions.

5 OPEN PROBLEMS AND FUTURE DIRECTIONS

We discuss important yet not-well-explored research directions in causal inference-based recom-
mender systems.

5.1 Causal Discovery for Recommendation

We have systematically reviewed numerous works that integrate causal inference into recom-
mender systems. However, existing approaches relying on predefined causal graphs or structural
causal models exhibit two significant limitations.

First, the assumed causal relationships may be inaccurate. Although the recommendation
tailored to the causal relations may improve the recommendation performance, hidden variables
may exist that are the real causes. Second, these manually crafted causal graphs are often simplis-
tic, typically involving only a few variables, such as the user conformity, user interest, and user
behavior in DICE [141], the exposure feature, user/item/context features, and prediction score in
CR [110]. Nevertheless, users’ decision-making processes may involve many factors in real-world
scenarios. For example, whether a user visits a restaurant depends on the location, cuisine,
brand, price, and so on. Therefore, it is essential to design causal discovery methods for learning
causal relations from real-world data in recommender systems. Traditional methods for causal
discovery can be categorized into the following types. Constraint-based (CB) algorithms, such
as the PC algorithm [93] and the FCI algorithm [92], initially identify conditional independence
relationships between pairs of variables and then construct a directed acyclic graph based on these
relationships. GES methods [13, 73] extend CB algorithms by incorporating a scoring function to
assess the suitability of a directed acyclic graph (DAG). However, these established methods
still grapple with challenges like high computational costs and limited robustness when dealing
with large-scale data [26]. Recently, novel approaches based on deep learning [42, 59, 88] and
reinforcement learning [142] have emerged to infer causal relationships from extensive datasets.
Therefore, it is a promising and crucial future direction for discovering causal relations and then
leveraging the learned causal relations to enhance recommendation.

5.2 Causality-aware Stable and Robust Recommendation

Recommender systems are expected to be highly stable and robust, which can be explained in
the following aspects. First, the utilized data is dynamically collected, such as newly-registered
users, new products, and so on. As a result, the data distribution may be fast-changing [105]. Sec-
ondly, there exist multiple recommendation scenarios, including different tabs within the same
mobile app, diverse domains, and various objectives. This necessitates that the recommendation
model be capable of maintaining robustness and stability across these scenarios. Last, there exists
a disparity between offline evaluations and online experiments. A recommendation model that
performs well in offline experiments should ideally deliver strong results in online environments.
In pursuit of greater stability and robustness in machine learning models, prior research [40, 57]
has underscored the potential of causality-aware models. These models demonstrate a promising
ability to adapt to different domains and excel in out-of-distribution (OOD) generalization [105].
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Therefore, harnessing causality for the enhancement of robust and stable recommendations holds
significant importance.

5.3 Causality-aware Graph Neural Network-based Recommendation

In recent years, graph neural networks have been developing in recommendation at an unexpect-
edly fast speed. GNN-based models have achieved strong performance in various recommendation
tasks, such as the significant performance improvement of LightGCN [30] against traditional neu-
ral network models [31] in collaborative filtering tasks. The success of graph neural networks is
mainly due to the strong ability to extract structured information, especially for the high-order sim-
ilarity on the graph. However, several critical challenges remain, awaiting solutions bolstered by
causality. First, there is a pressing need to demystify the workings of GNNs in making precise and
successful recommendations. The explainability of powerful GNN-based recommendation models,
encompassing both the model itself and the rationale behind recommendation results, remains an
area ripe for further research. Currently, these models often operate as black boxes. Second, while
recent strides have been made in causality-aware recommendation models that incorporate GNN
modules as integral components, the GNN module itself and the realm of causal inference remain
somewhat separate. Explicitly intertwining the message-passing processes of GNNs with causal
inference and reasoning for recommendation represents an open and uncharted research frontier.

5.4 Causality-aware Simulator and Environment for Recommendation

The recommender system is a kind of system that tries to estimate and recover how humans make
decisions. With a longer-term and more rational objective, such systems should not merely predict
current or next-step user interactions but also take into account sequences of interactions, with the
aim of maximizing user engagement or aligning with platform requirements. Given the dynamic
nature of user-system interactions, some prior works [39, 89] have introduced simulators for rec-
ommender systems. These works specifically employ reinforcement learning techniques, including
imitation learning [36], to simulate how users select items within specific environments and con-
texts. However, these approaches are predominantly data-driven and often lack the underpinning
of causality, potentially leading to inaccuracies in decision-making processes. Recently, causal
reinforcement learning (CRL) methods have emerged to address the issue of missing data in
reinforcement learning tasks. Bareinboim et al.[4] introduced the concept of leveraging causal
interventions to aid in estimating rewards while accounting for unobserved confounders. Addi-
tional works [49, 126] have delved into causal bandit algorithms, offering theoretical bounds on
performance improvements compared to non-causal bandits. Causally-aware reinforcement learn-
ing approaches exhibit substantial promise in handling data limitations when modeling dynamic
and sequential user-system interactions. Consequently, they are poised to play an indispensable
role in modeling both the simulator and the environment of recommender systems.

To conclude, the future endeavors in the realm of causality-aware recommender systems should
begin by addressing the constraints imposed by pre-defined causal graphs. Other promising av-
enues of research encompass enhancing robustness, which involves domain generalization, devis-
ing improved evaluation methods for long-term utility, bridging the gap between offline and online
settings, exploring more effective integration with graph neural networks, and the development
of causality-supported simulators for recommender systems.

6 CONCLUSION

In recent years, causal inference has emerged as a critically significant and transformative topic
within the realm of recommender systems research. Its significance cannot be overstated, as it has
fundamentally altered our understanding of recommendation models. This article represents an
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initial stride toward presenting a comprehensive survey of existing literature in this domain. It
meticulously and systematically delves into the rationale behind the applicability of causal infer-
ence and how it effectively mitigates the shortcomings inherent in non-causal recommendation
models. Our primary aim is to serve as a source of motivation for researchers already active in this
field and, equally importantly, to inspire those who are contemplating the initiation of research
endeavors in this exciting and burgeoning area.
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