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ABSTRACT
Sequential recommendation aims to leverage users’ historical be-
haviors to predict their next interaction. Existing works have not
yet addressed two main challenges in sequential recommendation.
First, user behaviors in their rich historical sequences are often im-
plicit and noisy preference signals, they cannot sufficiently reflect
users’ actual preferences. In addition, users’ dynamic preferences
often change rapidly over time, and hence it is difficult to cap-
ture user patterns in their historical sequences. In this work, we
propose a graph neural network model called SURGE (short for
SeqUential Recommendation with Graph neural nEtworks) to address
these two issues. Specifically, SURGE integrates different types of
preferences in long-term user behaviors into clusters in the graph by
re-constructing loose item sequences into tight item-item interest
graphs based on metric learning. This helps explicitly distinguish
users’ core interests, by forming dense clusters in the interest graph.
Then, we perform cluster-aware and query-aware graph convolu-
tional propagation and graph pooling on the constructed graph.
It dynamically fuses and extracts users’ current activated core in-
terests from noisy user behavior sequences. We conduct extensive
experiments on both public and proprietary industrial datasets. Ex-
perimental results demonstrate significant performance gains of
our proposed method compared to state-of-the-art methods. Fur-
ther studies on sequence length confirm that our method can model
long behavioral sequences effectively and efficiently.
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1 INTRODUCTION
Sequential recommendation attempts to predict a user’s next be-
havior by exploiting their historical behavior-sequences, which has
been widely adopted in modern online information systems, such
as news, video, advertisements, etc. Differ from traditional recom-
mendation tasks that model user preferences in a static fashion,
sequential recommendation is capable of capturing user’s evolved
and dynamic preferences. For example, a user may prefer to watch
soccer news only during the period of World Cup, which can be
regarded as a kind of short-term preference.

Existing works have realized the significance of modeling fast-
changing short-term preferences, by approaching the problem from
three perspectives. Specifically, early efforts [23, 46] adopt human-
designed rules or attention mechanism to assign time-decaying
weights to historically interacted items. The second category of
works [10, 45] leverages recurrent neural networks to summarize
the behavioral sequences, but they suffer from the short-term bot-
tleneck in capturing users’ dynamic interests due to the difficulty
of modeling long-range dependencies. Recent solutions [39] jointly
model long-term and short-term interests to avoid forgetting long-
term interests, but the division and integration of long/short-term
interests are still challenging. In short, the aforementioned works
commonly concentrate more on user behaviors of recent times,
and are not capable of fully mining older behavior-sequences to
accurately estimate their current interests. As a result, there are
two major challenges in sequential recommendation that have not
been well-addressed so far as follows.
• User behaviors in long sequences reflect implicit andnoisy
preference signals. Users may interact with many items with
implicit feedback, such as clicks and watches. Unlike explicit
feedback that can infer user preferences, such as likes and fa-
vorites, single implicit feedback cannot reflect user preferences.
The user may click on items that are not of their interest most of
the time and will not choose similar items for interaction after-
ward. However, these records will serve as noises in the user’s
behavior history, worsening the modeling of their real interests.
• User preferences are always drifting over time due to their
diversity. As we have mentioned, user preferences are changing,
no matter slow or fast. Given a point of time, some preferences
may be still activated and some others may have been deactivated.
Thus, even if we have extracted user preferences from the implicit
and noisy behaviors, it is still challenging to model how they
change in the history and estimate the activated preferences at
the current time, which is the core of recommendation models.

To address these two challenges, we propose a graph-based
method with graph convolutional networks to extract implicit pref-
erence signals. The dynamic graph pooling is then used to capture
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the dynamics of preferences. Specifically, we first convert the loose
item sequence to a tight item-item graph and design a attentive
graph convolutional network that gather weak signals to strong
ones that can accurately reflect user preferences. We then propose a
dynamic graph pooling technique that adaptively reserves activated
core preferences for predicting the user’s next behavior.

To summarize, the contributions of this paper are as follows,
• We approach sequential recommendation from a new perspective
by taking into consideration the implicit-signal behaviors and
fast-changing preferences.
• We propose to aggregate implicit signals into explicit ones from
user behaviors by designing graph neural network-based mod-
els on constructed item-item interest graphs. Then we design
dynamic-pooling for filtering and reserving activated core pref-
erences for recommendation.
• We conduct extensive experiments on two large-scale datasets
collected from real-world applications. The experimental results
show significant performance improvements compared with the
state-of-the-art methods of sequential recommendation. Further
studies also verify that our method can model long behavioral
sequences effectively and efficiently.

2 PROBLEM FORMULATION
Here we provide a formal definition of sequential recommendation.
Assume we have a set of items, denoted byX, where x ∈ X denotes
an item. The number of items is denoted as |X|. Generally, a user
has a sequential interaction sequence with items: {x1,x2, . . . ,xn },
where n is the number of interactions and xi is the i-th item that
the user has interacted with. Sequential recommendation aims to
predict the next item xn+1 that matches the user’s preferences.
The user’s preferences can be inferred from chronological user-
item implicit feedback. Based on the above definition, the task of
sequential recommendation can be formulated as follows:
Input: The interaction history for each user {x1,x2, . . . ,xn }.
Output: A recommendation model that estimates the probability
that a user with interaction history {x1,x2, . . . ,xn } will interact
with the target item xt at the (n + 1)-th step.

3 METHODOLOGY
Figure 1 illustrates our proposed SURGE model which is made up
of the following four parts, which we will elaborate on one by one.

• Interest Graph Construction. By re-constructing loose item se-
quences as tight item-item interest graphs based on metric learn-
ing, we explicitly integrate and distinguish different types of
preferences in long-term user behaviors.
• Interest-fusion Graph Convolutional Layer. The graph convolu-
tion propagation on the constructed interest graph dynamically
fuses the user’s interests, strengthening important behaviors, and
weakening noise behaviors.
• Interest-extraction Graph Pooling Layer. Considering users’ dif-
ferent preferences at different moments, a dynamic graph pool-
ing operation is conducted to adaptively reserve dynamically-
activated core preferences.

• Prediction Layer. After the pooled graphs are flattened into re-
duced sequences, we model the evolution of the enhanced in-
terest signals and predict the next item that the user has high
probability to interact with.

3.1 Interest Graph Construction
To integrate and distinguish different types of preferences in users’
rich historical behaviors, we can convert loose item sequences into
tight item-item interest graphs. The co-occurrence relationship
between two items is a reasonable construction criterion, but the
challenge is that the sparseness of the co-occurrence relationship
is not enough to generate a connected graph for each user. In
this section, we propose a novel way based on metric learning
to automatically construct graph structures for each interaction
sequence to explore the distribution of its interests.

3.1.1 Raw graph construction. This novel module attempts
to construct an undirected graphG = {V, E,A} for each interaction
sequence, where E is the set of graph edges to learn and A ∈
Rn×n denotes the corresponding adjacency matrix. Each vertex
v ∈ V with |V | = n corresponds to an interacted item (and the
associated embedding vector is denoted as h⃗ ∈ Rd ). We aim to learn
the adjacency matrix A, where each edge (i, j,Ai, j ) ∈ E indicates
whether item i is related to item j.

By representing each user’s interaction history as a graph, it is
easier to distinguish his/her core and peripheral interests. The core
interest node has a higher degree than the peripheral interest node
due to connecting more similar interests, and the higher frequency
of similar interests results in a denser and larger subgraph. In this
way, a priori framework is constructed, that is, neighbor nodes are
similar, and dense subgraphs are the core interests of users.

3.1.2 Node similarity metric learning. Since we need a pri-
ori graph in which neighbor nodes are similar, the graph learning
problem can be transformed into node similarity metric learning,
which will be jointly trained with the downstream recommenda-
tion task. This graph construction method is general, easy to im-
plement, and able to perfectly cope with inductive learning (with
new items during testing). Metric learning can be classified into
kernel-based and attention-based methods [48]. Common options
for kernel-basedmethods include cosine distance [30, 41], Euclidean
distance [38, 43] and Mahalanobis distance [18, 34]. A good similar-
ity metric function is supposed to be learnable to improve expres-
siveness and have acceptable complexity. To balance expressiveness
and complexity, we adopt weighted cosine similarity [5, 42] as our
metric function formulated as follows,

Mi j = cos(w⃗ ⊙ h⃗i , w⃗ ⊙ h⃗j ), (1)

where ⊙ denotes the Hadamard product, and w⃗ is a trainable weight
vector to adaptively highlight different dimensions of the item em-
beddings h⃗i and h⃗j . Note that the learned graph structure changes
continuously with the update of item embeddings.

To increase the expressive power and stabilize the learning pro-
cess, the similarity metric function can be extended to the multi-
head metric [5, 25]. Specifically, we use ϕ (the number of heads)
weight vectors to compute ϕ independent similarity matrices (each
one representing one perspective) using the above similarity metric
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𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏
𝒇𝒍𝒂𝒕𝒕𝒆𝒏

Interest Fusion 
and Extraction

a) Cluster-aware attention
score of the target node

b) Query-aware attention 
score of the source node

c) Interest fusion via 
attentive propagation

d) Soft cluster assignment 
with regularizations

B. Interest-fusion Graph Convolutional Layer. C. Interest-extraction Graph Pooling Layer.

e) Interest extraction via
graph pooling

A. Interest Graph Construction. D. Prediction Layer.

Figure 1: Illustration of the SURGE model. Each interaction sequence is re-constructed into an interest graph (A) based on
metric learning, and interest fusion (B) and extraction (C) are dynamically performed on the graph. The currently activated
core interest sequence (D) is obtained by flattening the pooled graph after interest fusing and extracting, which can be used
for further modeling and prediction. Best viewed in color.

function and take their average as the final similarity:

Mδ
i j = cos(w⃗δ ⊙ h⃗i , w⃗δ ⊙ h⃗j ), Mi j =

1
δ

ϕ∑
δ=1

Mδ
i j , (2)

where Mδ
i j computes the similarity metric between the two item

embeddings h⃗i and h⃗j for the δ -th head, and each head implictly
capture different perspective of semantics.

3.1.3 Graph sparsification via ε-sparseness. Typically, the
adjacency matrix elements should be non-negative, but the cosine
valueMi j calculated from the metric ranges between [−1, 1]. Sim-
ply normalizing it does not impose any constraints on the graph
sparsity and can yield a fully connected adjacency matrix. This is
computationally expensive and might introduce noise (i.e., unim-
portant edges), and it is not sparse enough that subsequent graph
convolutions cannot focus on the most relevant aspects of the graph.

Therefore, we extract the symmetric sparse non-negative adja-
cency matrix A from M by considering only the node pair with
the most vital connection. To make the hyperparameter of the ex-
traction threshold insensitive and not destroy the graph’s sparsity
distribution, we adopt a relative ranking strategy of the entire graph.
Specifically, we mask off (i.e., set to zero) those elements in M that
are smaller than a non-negative threshold, which is obtained by
ranking the metric value inM .

Ai j =

{
1, Mi j >= Rankεn2 (M );
0, otherwise; (3)

where Rankεn2 (M ) returns the value of the εn2-th largest value in
the metric matrixM . n is the number of nodes and ε controls the
overall sparsity of the generated graph.

It is different from the absolute threshold strategy of the entire
graph [5] and the relative ranking strategy of the node neighbor-
hood [4, 19]. The former sets an absolute threshold to remove

smaller elements in the adjacency matrix. When the hyperparame-
ters are set improperly, as the embedding is continuously updated,
the metric value distribution will also change, and it may not be
possible to generate a graph or generate a complete graph. The
latter returns the indices of a fixed number of maximum values
of each row in the adjacency matrix, which will make each node
of the generated graph have the same degree. Forcing a uniform
sparse distribution will make the downstream GCN unable to fully
utilize the graph’s dense or sparse structure information.

3.2 Interest-fusion Graph Convolutional Layer
As mentioned above, we have learnable interest graphs which sep-
arate diverse interests. The core interests and peripheral interests
form large clusters and small clusters respectively, and different
types of interests form different clusters. Furthermore, to gather
weak signals to strong ones that can accurately reflect user prefer-
ences, we need to aggregate information in the constructed graph.

3.2.1 Interest fusion via graph attentive convolution. We
propose a cluster- and query-aware graph attentive convolutional
layer that can perceive the user’s core interest (i.e., the item located
in the cluster center) and the interest related to query interest (i.e.,
current target item) during information aggregation. The input is
a node embedding matrix {h⃗1, h⃗2, . . . , h⃗n }, h⃗i ∈ Rd , where n is the
number of nodes (i.e., the length of the user interaction sequence),
and d is the dimension of embeddings in each node. The layer
produces a new node embedding matrix {h⃗′1, h⃗

′
2, . . . , h⃗

′
n }, h⃗

′
i ∈ R

d ′ ,
as its output with potentially different dimension d ′.

An alignment score Ei j is computed to map the importance
of target node vi on it’s neighbor node vj . Once obtained, the
normalized attention coefficients are used to perform a weighted
combination of the embeddings corresponding to them, to serve
as the refined output embeddings for every node after applying a
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residual connection and a nonlinearity function σ :

h⃗′i = σ
(
Wa · Aggregate

(
Ei j ∗ h⃗j |j ∈ Ni

)
+ h⃗i
)
. (4)

Note that aggregation function can be a function such as Mean,
Sum, Max, GRU, etc. We use the simple sum function here and leave
other functions for future exploration. To stabilize the attention
mechanism’s learning process, we employ multi-head attention
similar to [25, 26]. Precisely, ϕ independent attention mechanisms
execute the above transformation, and then their embeddings are
concatenated as the following output representation:

h⃗′i =

ϕ

∥
δ=1

σ
(
Wa

δ · Aggregate
(
Eδi j ∗ h⃗j |j ∈ Ni

)
+ h⃗i
)
, (5)

where ∥ represents concatenation operation, Eδi j are normalized
attention coefficients obtained by the δ -th attention head, andWa

δ

is the corresponding linear transformation’s weight matrix. It is
worth noting that the final returned output h⃗′ will correspond to
ϕd ′ dimension embeddings (rather than d ′) for each node.

3.2.2 Cluster- and query-aware attention. To strengthen
important signals and weaken noise signals when integrating inter-
ests, we propose a cluster and query-aware attention mechanism.
We uses the attention coefficients to redistribute weights on edge
information in the process of message passing. The attention mech-
anism considers the following two aspects.

Firstly, we assume that the target node vi ’s neighborhood will
form a cluster and regard the target nodevi in the graph as amedoid
of a cluster c (vi ). We define the k-hop neighborhood of the target
node vi as the receptive field of the cluster. The average value of all
nodes’ embedding in the cluster h⃗ic represents the cluster’s average
information. To identify whether the target node is the center of
the cluster, the target node embedding and its cluster embedding
are used to calculate the following attention score,

αi = Attentionc (Wch⃗i ∥ h⃗ic ∥Wch⃗i ⊙ h⃗ic ), (6)
where Wc is a transformation matrix, ∥ is the concatenation op-
erator and ⊙ denotes the Hadamard product. In our experiments,
the attention mechanism Attentionc is a two-layers feedforward
neural network with the LeakyReLU as activation function.

Secondly, in order to serve the downstream dynamic pooling
method and learn the user interest’s independent evolution for
different target interests, the correlation between the source node
embedding h⃗j and the target item embedding h⃗t should also be
considered. If the source node is more correlated with the query
item, its weight in the aggregation towards the target node will be
more significant, and vice versa. Since only relevant behaviors can
play a role in the final prediction, we only keep relevant information,
and irrelevant information will be discarded during aggregation.

βj = Attentionq (Wqh⃗j ∥ h⃗t ∥Wqh⃗j ⊙ h⃗t ), (7)
where Wq is a transformation matrix, ∥ is the concatenation op-
erator and ⊙ denotes the Hadamard product. In our experiments,
the attention mechanism Attentionq is a two-layers feedforward
neural network applying the LeakyReLU nonlinearity.

We follow the additive attention mechanism [1] to consider
the factors of cluster and query simultaneously. We sum the target
node’s cluster score and the source node’s query score as the update

weight of the source node j to the target node i . To make coefficients
easily comparable across different nodes, we employed the softmax
function to normalize them across all choices of j. The attention
coefficients Ei j is computed as:

Ei j = softmaxj (αi + βj ) =
exp(αi + βj )∑

k ∈Ni exp(αi + βk )
, (8)

where neighborhood Ni of node i includes node i itself. In the
context of containing self-loop propagation (when j equals i), αi
controls how much information the target node can receive, and
βj controls how much information the source node can send.

3.3 Interest-extraction Graph Pooling Layer
The fusion of implicit interest signals to explicit interest signals is
completed by performing information aggregation on the interest
graph. In this section, we use the graph pooling method [17, 22, 37]
to further extract the fused information. Similar to the downsam-
pling of feature maps in Pooling in CNN, graph pooling aims to
downsize the graph reasonably. Through the coarsening of the con-
structed graph structure, loose interest is transformed into tight
interest and its distribution is maintained.

3.3.1 Interest extraction via graph pooling. To obtain the
pooled graph, a cluster assignment matrix is necessary [22, 37]. As-
suming that a soft cluster assignment matrix S ∈ Rn×m exists, it can
pool node information into cluster information.m is a pre-defined
model hyperparameter that reflects the degree of pooling, where
m < n. Given the node embeddings {h⃗′1, h⃗

′
2, . . . , h⃗

′
n } and the node

scores {γ1,γ2, . . . ,γn } of the raw graph, the cluster embeddings and
scores of the coarsened graph can be generated as follows,

{h⃗∗1, h⃗
∗
2, . . . , h⃗

∗
m } = ST {h⃗′1, h⃗

′
2, . . . , h⃗

′
n }, (9)

{γ ∗1 ,γ
∗
2 , . . . ,γ

∗
m } = ST {γ1,γ2, . . . ,γn }, (10)

whereγi obtained by applying softmax on βi represents importance
score of the i-th node. Each row of assignment matrix S corresponds
to one of the n nodes, and each column corresponds to one of
them clusters. It provides a soft assignment of each node to the
corresponding cluster. Above equations aggregate node embeddings
and scores according to the cluster assignment S , thereby generating
new embedding and score for each of them clusters.

Next, we discuss how to learn differentiable soft clusters assign-
ment S for nodes. We use the GNN architecture[37] to generate the
assignment matrix. The probability matrix of the assignment map-
ping is obtained through standard message passing and the softmax
function, based on the adjacency matrix and the node embedding.

Si : = softmax
(
Wp · Aggregate

(
Ai j ∗ h⃗

′
j |j ∈ Ni

))
, (11)

where the output dimension of weight matrix Wp corresponds to
the maximum number of clustersm. The softmax function is used
to obtain the probability of the i-th node being divided into one
ofm clusters. It is worth noting that we can obtain the adjacency
matrix A∗ of the pooled graph by performing STAS , ensuring the
connectivity between clusters. Then, the repetition of the above
equations can perform multi-layer pooling to achieve hierarchical
compression of interest.
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3.3.2 Assignment regularization. However, it is difficult to
train the cluster assignment matrix S using only the gradient signal
from the downstream recommendation task. The non-convex opti-
mization problem makes it easy to fall into the local optimum in the
early training stage[37]. In addition, the relative position of each
node embedding in {h⃗′1, h⃗

′
2, . . . , h⃗

′
n } corresponds to the temporal

order of the interaction. But in the pooled cluster embedding matrix
{h⃗∗1, h⃗

∗
2, . . . , h⃗

∗
m }, the temporal order between the clusters reflecting

the user’s interest is difficult to be guaranteed. Therefore, we use
three regularization terms to alleviate the above issue.
• Same mapping regularization. To make it easier for two nodes
with greater connection strength to be mapped to the same clus-
ter, the first regularization is used as follows,

LM = ∥A, SS
T ∥F , (12)

where ∥ · ∥F denotes the Frobenius norm. Each element in adja-
cency matrix A represents the connection strength between two
nodes, and each element in SST represents the probability that
two nodes are divided to the same cluster.
• Single affiliation regularization. To clearly define the affiliation
of each cluster, we make each row Si : in assignment matrix ap-
proach a one-hot vector by regularizing the entropy as follows,

LA =
1
n

n∑
i=1

H (Si :) , (13)

where H (·) is the entropy function that can reduce the uncer-
tainty of the mapping distribution. The optimal situation is that
the i-th node is only mapped to one cluster, and the entropy
H (Si :) is 0 at this time.
• Relative position regularization. The temporal order of the user’s
interest before and after pooling needs to bemaintained for down-
stream interest evolution modeling. However, the operation of
swapping the index on the pooled cluster embedding matrix
{h⃗∗1, h⃗

∗
2, . . . , h⃗

∗
m } is not differentiable. Therefore, we design a posi-

tion regularization to ensure the temporal order between clusters
during pooling as follows,

LP = ∥PnS, Pm ∥2, (14)
where Pn is a position encoding vector {1, 2, ...,n}, and Pm is a
position encoding vector {1, 2, ...,m}. Minimizing the L2 norm
makes the position of the non-zero elements in S closer to the
main diagonal elements. Intuitively, for the node with the front
position in the original sequence, the position index of the cluster
to which it is assigned tends to be in the front.

3.3.3 Graph readout. At this point, we have obtained a tightly
coarsened graph G∗ representing the user’s stronger interest signal.
At the same time, we perform a weighted readout on raw graph
G to constrain each node’s importance, which aggregates all node
embeddings after the forward computation of the propagation layer
to generate a graph-level representation h⃗д :

h⃗д = Readout({γi ∗ h⃗′i , i ∈ G}), (15)
where the weight is the score γi of each node before pooling, and
the Readout function can be a function such as Mean, Sum, Max,
etc. We use the simple sum function here to ensure permutation
invariant and leave other functions for future exploration. We feed

this graph-level representation into the final prediction layer to
better extract each cluster’s information in the pooling layer.

3.4 Prediction Layer
3.4.1 Interest evolutionmodeling. Under the joint influence

of the external environment and internal cognition, the users’ core
interests are continually evolving. The user may become interested
in various sports for a time and need books at another time. How-
ever, only using the readout operation mentioned above does not
consider the evolution between core interests, which will undoubt-
edly cause the time order’s bias. To supply the final representation
of interest with more relative historical information, it is also nec-
essary to consider the chronological relationship between interests.

Benefiting from the relative position regularization, the pooled
cluster embeddingmatrix maintains the temporal order of the user’s
interest, which is equivalent to flattening the pooled graph into a
reduced sequence with enhanced interest signals. Intuitively, we
can use any known sequential recommendation method to model
the concentrated interest sequence. For the sake of simplicity and
to illustrate the effectiveness of the pooling method, we use a single
sequential model to model the evolution of interest:

h⃗s = AUGRU({h⃗∗1, h⃗
∗
2, . . . , h⃗

∗
m }). (16)

As we know, GRU overcomes the vanishing gradients problem of
RNN and is faster than LSTM [11]. Furthermore, to make better
use of the importance weight γ ∗i of fused interest in the interest
extraction layer, we adopt GRU with attentional update gate (AU-
GRU) [45] to combine attention mechanism and GRU seamlessly.
AUGRU uses attention scoreγ ∗i to scale all dimensions of the update
gate, which results that less related interest make fewer effects on
the hidden state. It avoids the disturbance from interest drifting
more effectively and pushes the relative interest to evolve smoothly.

3.4.2 Prediction. We take the graph-level representation of
the interest extraction layer and evolution output of the interest
evolution layer as the user’s current interest, and concatenate them
with the target item embedding. Given the concatenated dense rep-
resentation vector, fully connected layers are used to automatically
learn the combination of embeddings. We use two-layer feedfor-
ward neural network as the prediction function to estimate the
probability of the user interacting with the item at the next mo-
ment, and all compared models in the experimental part will share
this popular design [39, 45, 46],

ŷ = Predict(h⃗s ∥h⃗д ∥h⃗t ∥h⃗д ⊙ h⃗t ). (17)

Following the CTR (click-through rate) prediction in the real-
world industry [45, 46], we use the negative log-likelihood function
as the loss function and share this setting with all compared models.
The optimization process is to minimize the loss function together
with a L2 regularization term to prevent over-fitting,

L = −
1
|O|

∑
o∈O

(yo log ŷo + (1 − yo ) log(1 − ŷo )) + λ∥Θ∥2, (18)

where O is the training set and |O| is the number of training in-
stances. Θ denotes the set of trainable parameters and λ controls
the penalty strength. The label yo = 1 indicates a positive instance
and yo = 0 indicates a negative instance. And ŷo stands for the
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Table 1: Statistics of the Datasets.

Dataset Users Items Instances Average Length
Taobao 36,915 64,138 1,471,155 39.85
Kuaishou 60,813 292,286 14,952,659 245.88

network’s output after the softmax layer, representing the pre-
dicted probability of the next item being clicked. Besides, the three
regularization terms in Section 3.3.2 are added to the final recom-
mendation objective function to obtain the better performance and
more interpretable cluster assignments.

4 EXPERIMENT
In this section, we conduct experiments on two real-world datasets
for sequential recommendation to evaluate our proposed method,
with the purpose of answering the following three questions.
• RQ1: How does the proposed method perform compared with
state-of-the-art sequential recommenders?
• RQ2: Can the proposed method be able to handle sequences with
various length effectively and efficiently?
• RQ3: What is the effect of different components in the method?

4.1 Experimental Settings
4.1.1 Dataset. We evaluate the recommendation performance

on a public e-commerce dataset and an industrial short-video dataset.
Table 1 summarizes the basic statistics of the two datasets. Average
Length represents the average of users’ history length, which indi-
cates that the scale of the industry dataset we adopt is much larger
than the public dataset.
• Taobao∗. This dataset is widely used for recommendation re-
search [20, 47], which is collected from the largest e-commerce
platform in China. We use the click data from November 25 to
December 3, 2017 and filter out users with less than 10 inter-
actions. We use the first 7 days as training set, the 8th day as
validation set, and the last day as test set.
• Kuaishou†. This is an industrial dataset collected from one of
the largest short-video platforms in China. Users can upload
short-videos and browse other users’ short-videos. We downsam-
ple the logs from October 22 to October 28, 2020. User behaviors
such as click, like, follow (subscribe) and forward are recorded
in the dataset. Click data is used to conduct experiments, and
the 10-core setting is also adopted to filter out inactive users and
videos. Behaviors of the first 6 days are used to train recommen-
dation models. Behaviors during the before 12 pm of the last day
is used as validation set, and we keep the instances after 12 pm of
the last day to evaluate the final recommendation performance.

4.1.2 Evaluation Metrics. To evaluate the performance of
each model, we use two widely adopted accuracy metrics including
AUC and GAUC [46], as well as two ranking metrics MRR and
NDCG. They are defined as follows,
• AUC signifies the probability that the positive item sample’s
score is higher than the negative item sample’s score, reflecting
the classification model’s ability to rank samples.

∗https://tianchi.aliyun.com/dataset/dataDetail?dataId=649
†https://www.kuaishou.com/en

• GAUC performs a weighted average of each user’s AUC, where
the weight is his number of clicks. It eliminates the bias between
users and evaluates model performance with a finer granularity.
• MRR is the mean reciprocal rank, which is the mean value of
the inverse of the ranking of the first hit item.
• NDCG@K assigns higher scores to hits at higher positions in
the top-K ranking list, which emphasizes that test items should
be ranked as higher as possible. In our experiments, we set K to
2, a widely-used setting in existing works.

4.1.3 Baselines. To demonstrate the effectiveness of our SURGE
model, we compare it with competitive sequential recommenders.
The baselines are classified into two categories: non-sequential
model that only captures user’s static interest, and sequential mod-
els that consider dynamic interest patterns.
Non-sequential Models:
• NCF [9]: This method combines matrix factorization and multi-
layer perceptrons to predict user interactions, and it is the state-
of-the-art general recommender.
• DIN [46]: This method uses attention mechanism with the target
item as the query vector. Representation of the user is obtained by
aggregating the history interaction with the attention weights.
• LightGCN [8]: This is the state-of-the-art model which uses
graph neural network to extract higher-order connectivity for
the recommendation.

Sequential Models:
• Caser [24]: This method embeds a set of recent item sequences in
time and latent space into an image feature and uses convolution
filters to learn the its sequence patterns.
• GRU4REC [10]: This method uses GRU to model user session
sequences and encode user interest into a final state.
• DIEN [45]: This method uses a two-layer GRU composed of
interest extraction layer and interest evolution layer to model
the user’s behavior sequence.
• SLi-Rec [39]: This is the state-of-the-art method that jointly mod-
els long and short-term interests based on an attention framework
and an improved time-aware LSTM.
It is worth noting that session recommendation is another rec-

ommendation task similar to sequential recommendation, which
aims to predict the next item based on only the user’s current
session data without utilizing the long-term preference profile. Re-
cently, graph-based models [21, 31, 33, 35] achieve successes on
this task. The complex transitions between repeated behaviors in
each session are modeled through the small item graphs for each
user. However, users rarely produce repetitive behaviors over a
long time, making relevant work impossible to apply to the task of
sequential recommendation.

4.1.4 Hyper-parameter Settings. We implement all the mod-
els with the Microsoft Recommenders framework‡ based on Tensor-
Flow§. We use Adam [14] for optimization with the initial learning
rate as 0.001. The batch size is set as 500 and embedding size is fixed
to 40 for all models. Xavier initialization [7] is used here to initialize
the parameters. All methods use a two-layer feedforward neural
network with hidden sizes of [100, 64] for interaction estimation.

‡https://github.com/microsoft/recommenders
§https://www.tensorflow.org
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Table 2: Performance comparisons (bold means p-value < 0.05, bold* means p-value < 0.01, and bold** means p-value < 0.001.)

Method
Taobao Kuaishou

AUC GAUC MRR NDCG@2 AUC GAUC MRR NDCG@2

NCF 0.7128 0.7221 0.1446 0.0829 0.5559 0.5531 0.7734 0.8327
DIN 0.7637 0.8524 0.3091 0.2352 0.6160 0.7483 0.8863 0.9160
LightGCN 0.7483 0.7513 0.1669 0.1012 0.6403 0.6407 0.8175 0.8653
Caser 0.8312 0.8499 0.3508 0.2890 0.7795 0.8097 0.9100 0.9336
GRU4REC 0.8635 0.8680 0.3993 0.3422 0.8156 0.8333 0.9174 0.9391
DIEN 0.8477 0.8745 0.4011 0.3404 0.7037 0.7800 0.9030 0.9284
SLi-Rec 0.8664 0.8669 0.3617 0.2971 0.7978 0.8128 0.9075 0.9318
SURGE 0.8906∗∗ 0.8888 0.4228∗ 0.3625∗∗ 0.8525∗∗ 0.8610∗∗ 0.9316∗∗ 0.9495∗

The maximum length for user interaction sequences is 50 for the
Taobao dataset and 250 for the Kuaishou dataset. We apply careful
grid-search to find the best hyper-parameters. All regularization
coefficients are searched in [1e−7, 1e−5, 1e−3]. The pooling length
of the user interaction sequence is searched in [10, 20, 30, 40, 50]
for Taobao dataset and [50, 100, 150, 200, 250] for Kuaishou dataset.

4.2 Overall Performance (RQ1)
Table 2 illustrates the results on the two datasets. From the results,
we have the following observations:
• Our proposed method consistently achieves the best per-
formance. We can observe that our model SURGE significantly
outperforms all baselines in terms of both classification and rank-
ing metrics. Specifically, our model improves AUC by around
0.03 (p-value < 0.001) on Taobao dataset and 0.04 (p-value < 0.001)
on Kuaishou dataset. The improvement is more obvious on the
Kuaishou dataset with longer interaction history, which verifies
that our method can handle long sequences more effectively and
significantly reduces the difficulty of modeling user interests.
• Sequential models are effective but have a short-term bot-
tleneck. Compared with NCF, DIN and LightGCN, the better
performance of Caser, DIEN and GRU4Rec verifies the necessity
of capturing sequential patterns for modeling user interests. On
the Taobao dataset, RNN-based models (GRU4Rec and DIEN)
with more powerful ability to capture sequential patterns outper-
formed the CNN-based model (Caser). The max pooling scheme
in CNN that is commonly used in computer vision omits impor-
tant position and recurrent signals when modeling long-range
sequence data. But on the Kuaishou dataset, since RNNs tend to
forget long-term interest when processing longer sequences, the
performance of DIEN and GRU4Rec are in par with Caser in most
metrics. This result indicates that even powerful recurrent neu-
ral networks have a short-term memory bottleneck. In addition,
since long sequences tend to contain more noise, DIEN’s perfor-
mance on the two datasets is unstable compared to GRU4REC.
This shows that the even though two-layer GRU structure is often
more effective, the performance is more likely to be impacted by
noise on datasets with long sequences, therefore justifying our
motivation to summarize the sequences with metric learning.
• Joint modeling long and short-term interests does not al-
ways add up to better performance. SLi-Rec, which joint mod-
els long and short-term interests, is the best baseline on Taobao in

terms of the AUC metric, but exhibits poor performance accord-
ing to rankingmetrics. In addition, on Kuaishouwith longer inter-
action sequences, SLi-Rec’s performance is worse than GRU4Rec
for all metrics, even though GRU4REC does not explicitly model
long and short-term interests. This indicates that although SLi-
Rec utilizes two separate components to model users’ long and
short-term interests, it still fails to effectively integrate them
into a single model, in particular for long sequences. Moreover,
SLi-Rec leverages timestamp information to improve modeling
long and short-term interests. However, our method shows better
performance by compressing information with metric learning,
without the need to explicitly model timestamp.

4.3 Study on Sequence Length and Efficiency
Comparison (RQ2)

4.3.1 Study on Sequence Length. In real-world applications,
a user may have very long interaction sequences. Long historical
sequences often have more patterns that can reflect user interests,
but the accompanying increased noise signals will mislead the mod-
eling of real interests. Thus, whether to effectively model the user’s
long-term history is a significant issue for sequential recommen-
dation. We study how SURGE improves the recommendation for
those users with long behavior records. Specifically, we divide all
users of the two datasets into five groups based on the length of the
interaction history. For each group, we compare the performance
of our method with the baseline methods and present the GAUC
metric of the two datasets, as shown in Figure 3.

From the results, we can observe that all models are challenging
to capture users’ real interest when the sequence length is short
due to data sparsity. As the length of the sequence increases and
the difficulty of modeling decreases, most models’ performance
improves and reaches a peak. But as the length continues to increase,
most models’ performance will decline with the introduction of a
large number of noise signals. Among them, DIN and DIEN declined
most significantly. It is difficult for DIN to focus on the most critical
parts in a long sequence. The item with the greatest attention may
occur in the early part of the sequence, and it may be very different
from the user’s current interest. When the two-layer GRU structure
in DIEN models user interests, the next GRU input depends on
the previous GRU output, making it easier to be disturbed by the
noise in long sequences. Due to the short-term bottleneck of a
single GRU, GRU4REC will only focus on the recent history and
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Figure 2: Performance breakdown by sequence lengths on
the two datasets. Best viewed in color.

ignore the sequence length, and its performance in each length
group is relatively stable. Although SLi-Rec jointly considers users’
long-term and short-term interests, it still models for noise-filled
sequences, so it is inevitable to suffer performance degradation on
long sequences.

However, the performance gap between SURGE and other meth-
ods becomes larger as the sequence length increases. Furthermore,
even in the user group with the longest historical sequence, SURGE
still keeps the excellent performance of 0.8919 and 0.8502 on Taobao
and Kuaishou datasets, respectively. Since the SURGEmodel merges
implicit signals into explicit signals and filters out noise, it can
achieve good performance for users with a long history. In sum-
mary, we conclude that the SURGE model we proposed can more
effectively model users’ long-term historical sequence.

4.3.2 Efficiency Comparison. For sequential recommenda-
tion systems, it is challenging to efficiently model user behavior
history. The differences and diversity of items in the user’s historical
sequence lead to slow model convergence. Besides, long historical
sequences often correspond to more complex calculations and more
time-consuming training. To study whether SURGE can alleviate
the issue, we visualize the training process of SURGE and baseline
models and compare the convergence speed and training time of
each model. Specifically, we plot the performance changes of the
proposed method and the baseline methods on the validation set
during the training process and reported the GAUC metric. We
use early stop to detect whether the training is over, that is, if the
GAUC on the validation set does not increase within five epochs,
the training process will stop. For the two datasets’ performance
change curves, we use smoothing rates of 0.2 and 0.6 to smooth
them to see the trend better.

The training process on the two datasets is shown in Figure 3.
From the results, we can observe that DIN fails to focus on criti-
cal interests on long sequences, so it continually fluctuates on the
kuaishou dataset and it is difficult to converge. Since GRU4REC is
more likely to forget long-term interests, only the item embeddings
at the end of the sequence will be updated in each training instance.
Therefore, its training curve is steady and slow, and the continu-
ous slight increase makes it hard to stop early. Because SLIREC
specifically considers the long-term interests of users, it converges
quickly on the kuaishou dataset, but it is the slowest method on
the Taobao dataset with a shorter sequence.

Table 3 shows each model’s training time on the two datasets.
We can observe that, except for the non-sequential model of DIN

0 4000 8000
Iteration

0.60

0.70

0.80

0.90

G
A

U
C

Tabobao Dataset

DIN
DIEN
CASER
GRU4REC
SLi-Rec
SURGE

0 5000 10000
Iteration

0.60

0.70

0.80

G
A

U
C

Kuaishou Dataset

DIN
DIEN
CASER
GRU4REC
SLi-Rec
SURGE

Figure 3: Test performance of the baselines by iterations on
two datasets. Best viewed in color.

Table 3: Total training time until convergence of baselines
on two real-world datasets, where m indicates minutes.

Dataset DIN Caser GRU4REC DIEN SLi-Rec SURGE

Taobao 22.65m 23.66m 26.78m 18.74m 27.82m 14.96m
Kuaishou 20.59m 120.26m 73.35m 28.47m 28.84m 22.86m

on the kuaishou dataset, our method’s efficiency improvement com-
pared with all baselines is more than 20%. The reason is that SURGE
performs a pooling operation on the sequence before feeding the em-
bedded sequence into the recurrent neural network, which greatly
reduces the number of recurrent steps. Besides, since most of the
noise is filtered, the pooled sequence only contains the core interest,
which will undoubtedly help speed up the model’s convergence.
Therefore, we concluded that the SURGE model we proposed can
more efficiently model users’ long-term historical sequence.

4.4 Ablation and Hyper-parameter Study (RQ3)
4.4.1 Effectiveness of interest fusion. We propose to per-

form message passing on the interest graph based on similarity
to merge weak signals into strong signals. We now investigate
whether this fusion design that strengthens core interests and acti-
vates target interests is necessary. To be specific, Specifically, we
compare the no propagation, cluster-aware propagation, query-
aware propagation, cluster- and query-aware propagation.

The results on the two datasets in Table 4 show the effectiveness
of fusing weak signals into strong signals through graph convolu-
tion. The enhancement of core interest and the activation of target
interest respectively bring further performance improvements.

4.4.2 Effectiveness of interest extraction. To evaluate the
impact of interest extraction through pooling strategy on interest
modeling. We compared no graph pooling, graph pooling without
assignment regularization, graph poolingwithoutweighted readout,
and complete graph pooling.

The results are shown in Table 4. We can observe that interest
extraction can help filter irrelevant noise so that the model focuses
on the most critical part of modeling. Especially when the assign-
ment regularization and the graph readout are injected into the
model, the user’s interest can be better compressed to improve the
recommendation performance.

4.4.3 Design choices for interest evolution. Our framework
is agnostic to the selection of the prediction layer after the pool-
ing sequence. We can use any known sequential recommendation
method to model the concentrated interest sequence. We compared
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Table 4: Ablation study of the key designs

Model
Taobao Kuaishou

AUC MRR AUC MRR

Interest
Fusion

w/o Fusion 0.8307 0.0317 0.7149 0.9076
w/o Query-aware 0.8720 0.3929 0.7641 0.9069
w/o Cluster-aware 0.8764 0.3973 0.8213 0.9186
w/ Fusion 0.8906 0.4228 0.8525 0.9316

Interest
Extraction

w/o Extraction 0.8513 0.3605 0.8240 0.9182
w/o Readout 0.8578 0.3720 0.8422 0.9257
w/o Regularization 0.8815 0.0343 0.8487 0.9291
w/ Extraction 0.8906 0.4228 0.8525 0.9316

the effects of using different prediction layers on the pooled se-
quence, includingAttention (DIN), GRU (GRU4Rec), AUGRU (DIEN)
and TIME4LSTM (SLi-Rec), and the results are shown in Figure 4.

The first observation is that the performance of sequential mod-
els other than DIN are less different, and AUGRU, which can utilize
the cluster score in the interest extraction layer, is slightly better.
The second observation is that modeling on the pooled sequence
can bring benefits to all existing methods. It shows that our pooling
strategy will significantly reduce the difficulty of modeling user
interests and obtain better performance.

In conclusion, we conduct extensive experiments on two real-
world datasets, which verifies that our proposed SURGE model
outperform existing recommendation methods. Further studies
demonstrate our model can effectively and efficiently alleviate the
problem that long sequences are difficult to model.

5 RELATEDWORK

Sequential Recommendation. Sequential recommendation is
defined as leveraging historical sequential behaviors for predict-
ing next behavior. The earliest work, FPMC [23], used Markov
chain to model the transition in behavior sequences. For stronger
ability to learn the complex bahaviors, deep learning-based meth-
ods [10, 13, 24, 45, 46] were proposed, including recurrent neural
network-based ones [10, 45] and attention network-based ones [13,
46]. These works pay more attention to users’ recent behaviors
and largely ignore the users’ long-term behaviors. Considering this
point, there are some recent works [39, 44] combining sequential
recommendation model and a normal recommendation model, such
as matrix factorization [16], to capture long and short-term interest.

However, roughly dividing user interest into long-term part and
short-term part is not reasonable. Compared with these works, in
our work, we approach the problem of sequential recommendation
from a new perspective: we argue the sequential behaviors reflect
weak preference signals, and some part of user preferences may be
deactivated at a given time point.
Graph Neural Networks for Recommendation. In recommen-
dation scenarios, the input data can be represented in a graph struc-
ture. Recently, with strong ability of learning from graph-structure
data, graph neural networks [15, 26] have become popular means
for recommender systems. PinSage [36] applied GCN to pin-board
graphs, which was the first work for applying GCN into indus-
trial recommender systems. The standard GCN [15] was adopted
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Figure 4: Performance comparison of the proposed method
using different interest evolution layers.

to factorizing user-item rating matrices into user and item em-
bedding matrices for recommendation [2] and Wang et al. [29]
further proposed the general solution for implicit recommenda-
tion task. GCN-based methods have achieved the state-of-the-art
performance in other recommendation problems, such as social
recommendation [6, 32, 40], knowledge graph-based recommen-
dation [27, 28], multi-behavior recommendation [12], bundle rec-
ommendation [3], etc. There are some works [33] utilizing graph
neural networks for session-based recommendation, a problem
similar with sequential recommendation. In session-based recom-
mendation, one of most important goals is to capture the seasonal
repetitive behaviors, making it has big difference with sequential
recommendation, which is a more general and important problem
in the research area.

Differ from aforementioned works, we take advantage of graph
convolutional propagation to fuse the weak preference signals to
strong ones and propose graph pooling to extract the dynamically-
activated core preference in the long behavior sequences.

6 CONCLUSIONS AND FUTUREWORK
In this work, we studies the task of sequential recommender sys-
tems. We propose a graph-based solution that re-constructs loose
item sequences into tight item-item interest graphs. The model uti-
lizes graph neural network’s powerful ability to dynamically fuse
and extract users’ activated core interests from noisy user behavior
sequences. Extensive experiments on both public and proprietary
industrial datasets demonstrate the effectiveness of our proposal.
Further studies on sequence length confirm that our method can
model long behavioral sequences effectively and efficiently.

As for future work, we plan to conduct A/B tests on the online
system to further evaluate our proposed solution’s recommendation
performance. We also plan to consider using multiple types of
behaviors, such as clicks and favorites, to explore fine-grained
multiple interactions from noisy historical sequences.
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