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ABSTRACT

City plans are the product of integrating human creativity with emerging technologies, which continuously evolve and reshape
urban morphology and environments. Here, we argue that large language models (LLMs) hold large untapped potential in
addressing the growing complexities of urban planning and enabling a more holistic, innovative, and responsive approach to city
design. By harnessing their advanced generation and simulation capabilities, LLMs can contribute as an intelligent assistant for
human planners in synthesizing conceptual ideas, generating urban designs, and evaluating the outcomes of planning efforts.

Introduction
Urban planning plays a critical role in shaping the quality of life for city residents, influencing every aspect of the city,
from land use and facility placement to transportation and travel1–4. With billions of people living in or migrating to cities,
developed urban regions require renovation, while newly developing urban areas need to be carefully planned to accommodate
growth5. Historically, urban planning methodologies have continually evolved to meet the ever-expanding needs of urban
environments6–8. Today, as new trends emerge in urban planning, planners are confronting critical challenges. First, urban
planning is increasingly complex within interdisciplinary contexts, extending beyond simple spatial layouts to encompass
comprehensive factors of social equity9, 10, environmental resilience11, urban sustainability12, and so forth. Addressing this
growing complexity demands a deep understanding of diverse knowledge across multiple domains. Second, new concepts,
such as the 15-minute city13–15, which promotes efficient layout such that basic urban services are accessible within walking or
cycling distance, are emerging. Adapting to new concepts, reducing their negative effects such as potential segregation risk in
15-minute city13, and further translating these theoretical ideas into actionable urban plans present a significant challenge that
requires strong reasoning capabilities to align tangible geospatial layout with concrete descriptions of planning objectives. Third,
cities are giant systems involving a large number of entities and complicated interactions16–20, which makes the evaluation of
urban planning particularly challenging21–24. To address these challenges, future approaches in urban planning are anticipated
to empower designers through the integration of cutting-edge technologies featuring advanced abilities in understanding,
reasoning and simulating urban dynamics.

Artificial Intelligence (AI) has made a substantial impact to the processes of creation and design across a wide range
of areas and disciplines. In particular, since the release of ChatGPT in late 2022, Large Language Models (LLMs) have
demonstrated noteworthy generative abilities25–28. Specifically, different from pre-existing AI models that narrowly focus on
specific cognitive tasks and application domains, LLMs use natural language as a unifying “code” to represent knowledge in a
wide variety of domains29, 30. Through large-scale self-supervised pretraining on diverse domain data, supervised fine-tuning
on instruction pairs, and post-training based on reinforcement learning, LLMs develop superior reasoning capabilities31. With
notable examples including the recently released DeepSeek-R1 model32 and OpenAI o-series models33, 34, LLMs are now
able to proficiently engage in chatting26, 35, writing codes36, and even deriving mathematical expressions37, 38. Beyond natural
language, visual large models (VLMs)39, 40, such as large diffusion models41, 42 that align different modalities by learning
from vast image-caption datasets, can generate high-quality artworks including images41, 3D scenes43, 44, and even videos45.
Moreover, LLM Agents integrate external memory, tool usages, and planning into LLMs, enhancing their ability to accomplish
complex tasks in an interactive environment46–49, such as robotic manipulation50 and social simulation51, 52.

Despite LLMs’ emergent design abilities across various fields, what remains largely unexplored is the design of the
environments in which we live—our cities. Here, we advocate for integrating LLM into the future collaborative workflows



between planners and AI toward more intelligent city design.

Contemporary urban planning
Two traditional approaches
Since Howard’s Garden City53 proposal in the 1890s, urban planning has been a critical discipline continuously evolving to
meet the challenges posed by rapid urbanization. Before 1940s, the planning of cities was regarded primarily as architectural
design at a larger scale54. As a consequence, planners used to take a physical and aesthetic view, with the planning theories
focusing more on the spatial arrangement of urban structures and functions55–59, exemplified by the New Towns Act in the
United Kingdom60 and Urban Renewal Program in the United States61–both largely adhering to these concepts. However, this
“physical art” approach overlooked the social dimensions of city life and did not fully account for human activities, failing to
account for critical issues such as high crime rates and urban decay62.

After the second World War, urban planning shifted from an artistic practice to a more scientific discipline54, 62. This
new approach regards cities as large, complex systems comprising various interconnected sub-systems, and employs well-
curated models to account for the diverse social aspects of cities7. Rather than creating static designs, modern urban planning
emphasizes the dynamic processes within cities, particularly the daily activities of urban residents63–65. Influential approaches
include Lindblom’s incremental planning66, Faludi’s planning theory67, and Healey’s communicative planning68. This “analytic
science” approach has also inspired contemporary ideas such as the concept of 15-minute city13, 14, which advocates for dense,
compact land use that fosters more equitable, convenient, and inclusive urban living.

Despite their substantial impact on modern urban planning, the two approaches discussed above are insufficient to address
the complexities of cities in the current era. First, the planning process remains primarily planner-centered, involving complex
concepts and regulations often inaccessible to the general public. This limits effective public participation of multiple
stakeholders, an increasingly crucial practice in today’s urban planning69, 70. Second, the evaluation of urban planning in these
two approaches is typically coarse-grained, subjective, and qualitative. However, contemporary urban planning increasingly
demands fine-grained, quantitative, and objective feedback to inform scientific decision-making22, 23.

Recent advances using pre-LLM AI models
With the unprecedented availability of urban geospatial data, a data-driven approach has emerged to enhance traditional
urban planning methods with pre-LLM AI models71–73. These AI models feature two main advantages. First, they have the
capability to discover the underlying rules from these rich datasets. These rules guide more accurate prediction of urban
spatio-temporal patterns74, enabling the generation of city designs that closely resemble real-world structures both visually and
statistically75. Generative Adversarial Networks (GANs)76 and Variational Auto-Encoders (VAEs)77 are two of these models
that are commonly used to synthesize urban elements, including street networks75, 78, functional zoning79–81, and building
footprints82, 83. Second, these models assist in making strategic decisions to optimize specific metrics that reflect the efficiency
and quality of urban life. Reinforcement learning84 is typically employed to achieve effective urban planning, such as 15-minute
community layout85, 86, road planning87, and metro network expansion88, 89.

While these AI models have enhanced urban planning in important ways, their limited scope hinders their ability to fully
capture the complexities of modern cities. Specifically, urban planning requires a comprehensive understanding of diverse
knowledge. Since pre-LLM small models are trained on limited task-specific datasets, they struggle to address the growing
interdisciplinary nature of urban planning. As a consequence, these models often focus on a narrow range of aspects applicable
in restricted scenarios, with limited generalizability across diverse urban planning tasks. In light of these shortcomings, LLMs,
with rich embedded knowledge, hold the potential to overcome the limitations of smaller models in urban planning.

Opportunities brought by LLMs
The past two years have witnessed advancements in LLMs, transforming the workflows of human designers with their generative
abilities. The following developments provide valuable opportunities to enhance urban planning practices:

• LLMs possess and leverage vast arrays of transdisciplinary knowledge. Effective urban planning demands a
comprehensive understanding of various domains, including geography, economics, sociology, and so forth. The versatile
nature of LLMs is crucial for addressing such interdisciplinary complexity inherent in urban planning. Specifically,
LLMs have demonstrated emergent abilities in answering complicated questions across different subjects and domains.
For example, benchmarking results have shown that LLMs demonstrate deep knowledge in math90, medicine91, law92,
and finance93. In particular, researchers have observed a scaling law where performance substantially surpasses random
guessing once LLMs cross a certain threshold of model parameters and training data94. Therefore, by increasing model
size and pre-training on larger urban planning datasets, LLMs have the potential to process and leverage rich domain
knowledge to account for the multiple aspects of urban planning.
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• LLMs are capable of more elaborate reasoning based on conceptual instructions. Translating abstract concepts
into concrete, satisfactory design is a challenging task. Through reinforcement learning adopted by the recently released
DeepSeek-R1 model32 and OpenAI o-series models33, 34, LLMs can achieve more elaborate reasoning to decompose
complex tasks into smaller steps. The reasoning capabilities can extend beyond a single language modality and
encompass high-dimensional modalities. In particular, VLMs have demonstrated good performance in analyzing multi-
modal contents95–97 and generating highly realistic images41 and videos98 based on conceptual linguistic instructions,
potentially offering benefits for designing cities that align with diverse planning concepts. Particularly, significant
advancements are observed in understanding urban-related visual images such as satellite images95 and street-view
images96, 97 with VLMs.

• LLMs can enhance predictive evaluation and public participation in urban planning. LLM agents could perform
role-playing with heterogeneous and personalized profiles defined by residents and planners, enabling predictive
simulation of residents’ daily activities. Researchers have successfully utilized LLM agents for simulations across
physical50, social51, 52, 99, and cyber domains100, indicating large potential for urban simulation that allows for more
accurate evaluations of urban planning. Also, community engagement plays an increasingly crucial role in contemporary
urban planning, yet traditional planning approaches often fail to make public participation accessible. LLMs can help
address this discrepancy by providing a user-friendly protocol to enhance public participation: with capabilities in
conducting human-like dialog using natural language, LLMs can facilitate an intuitive and conversational interface to
engage the public. In this way, residents, together with planners, can directly interact with LLMs, refining urban plans
through multiple rounds of discussions.

These advantages of LLMs have led to a series of research projects that developed specialized urban LLMs101–110 that
feature a deepened understanding of urban environments, showcasing the new opportunities brought to urban planning by
LLMs.

Towards LLM-driven urban planning
To bridge the gap, we introduce an LLM-driven planning framework that serves as an intelligent assistant to support human
planners, integrating AI’s computational power with human expertise and domain insights to enhance planning efficiency and
decision-making. This framework consists of three interconnected components to enhance creativity and decision-making,
as illustrated in Figure 1. First, LLMs support the conceptualization of urban planning by assisting planners in developing
prototypical ideas and crafting detailed descriptive planning texts for the site to be designed. Through analyzing textual input,
such as planning needs, requirements, and guidelines, LLMs can help identify regions in need of renovation and offer strategic
suggestions for optimizing urban layout, incorporating diverse knowledge from related fields. Second, VLMs facilitate the
generation of urban designs by transforming planners’ input prompts—reflecting planning concepts and constraints—into
detailed visual output, such as layouts and cityscapes, all conditioned on user-defined draft plans. Third, an LLM agent
is employed to evaluate the planning effect, which incorporates generated urban plans, demographics and other conditions
to simulate complex urban dynamics, including human mobility. This approach has the potential to provide a quantitative
and accurate assessment of how residents interact with the city, offering actionable feedback for planners. The provided
framework creates a blueprint for how LLMs can assist planners, where LLMs, VLMs, and LLM agents enable a systematic
and collaborative workflow of conceptualization, generation, and evaluation in urban planning, addressing critical limitations of
traditional approaches.

Conceptualization
Synthesizing conceptual ideas is the first step in urban design, as it sets the foundational tone and overarching vision for the
planned city. Conceptualization involves the abstract and preliminary arrangement of urban functionalities and forms, often
depicted through condensed textual descriptions, overall morphologies, and critical elements such as corridors and hubs tailored
for specific purposes. A principled approach is essential to achieve effective conceptual design, requiring a comprehensive
consideration of the complex urban context, including geospatial conditions, master plans, and guidelines, as well as key factors
like environmental sustainability, resilience, social equity, and economic prosperity. Traditionally, human designers undertake
this intricate task manually, engaging in discussions, consultations, and negotiations with multiple stakeholders to refine these
concepts. The outcome is typically a set of textual documents that clearly articulate the motivations and logic behind the
prototypical planning concepts. However, the conceptualization process is highly time-consuming, particularly when relying
solely on human effort.

Figure 2 illustrates how the framework enhances the conceptualization process by integrating LLMs to support human
planners and boost their productivity. An LLM, exposed to vast textual contents from various urban planning-related fields, such
as environmental science, sociology, and economics, is employed within the framework. Through large-scale pretraining, the
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LLM gains extensive knowledge across these fields, allowing it to generate informed responses in urban planning discussions,
complementing the expertise of experienced human planners. Then, the framework facilitates the conceptualization process
through a conversational iteration between human planners and the LLM. In each round of conversation, human planners begin
by conducting prompt engineering, transforming planning needs, requirements, guidelines, and other relevant materials into
informative prompts. The LLM then responds with conceptual ideas, offering suggestions on urban forms and functionalities.
Leveraging its extensive spatio-temporal knowledge of the real world111, 112, the LLM is able to propose layouts for conceptual
elements such as centers and corridors, while its advanced reasoning abilities allow it to navigate complex contexts, including
input needs, guidelines, and prior conversations. Post-training and prompting strategies such as GraphRAG113 and chain-of-
thought (COT)114 combined with reinforcement learning (RL)115 further enhance the LLM’s reasoning capabilities, making
it more adept at achieving effective planning conceptualization. Based on the LLM’s responses, human planners can refine
the input and initiate additional rounds of conversation to revise and improve the conceptualization results. Meanwhile, since
LLMs may exhibit biases—particularly toward overrepresented regions or domains in their training data116—the involvement
of human planners is essential to identify and correct potential biases in the generated planning outcomes, ensuring that the
results remain contextually appropriate and equitable across diverse urban environments. Ultimately, this collaborative process
produces a detailed and satisfactory textual description of urban planning concepts, with all prototypical spatial arrangements
documented in output texts that can be further visualized as draft plans. In brief, LLMs have the capability to effectively
support human planners during the conceptualization phase, acting as responsive, human-like consultants with transdisciplinary
knowledge and reasoning abilities, aiding in the synthesis of ideas based on rich domain knowledge and contextual information.

To offer an intuitive illustration on LLMs’ ability in handling diverse and complex urban planning concepts and planning-
related text, we tested their performance in qualification exams for professional human planners117, which cover a comprehensive
range of urban planning-related disciplines, including transportation, economics, geography, sociology, ecology and environ-
ment. We evaluated the accuracy of questions regarding basic theories and practical know-how of urban planning, using the
Qwen2 LLM118 of different sizes. The results show that the largest LLM with 70 billion parameters has outperformed the top
10% of human planners in answering challenging questions related to planning concepts, implying the potential in synthesizing
conceptual ideas in the initial stages of urban planning with LLMs.

Generation
Generating specific urban layouts lies at the core of urban planning, as it shapes the spatial organization of cities and influences
subsequent urban activities. The generation process addresses diverse objectives, including land use, road networks, facility
locations, public transportation systems, and so forth. Unlike conceptual ideas expressed through natural language, urban
layouts are described with concrete geospatial elements and locations, which require precise representation, often in imagery
or more accurate vector formats. This process demands a principled approach capable of handling contents across multiple
modalities while capturing the complex interrelationships between them. Moreover, urban layouts cannot be generated
arbitrarily; they must adhere to various constraints such as geography, social dynamics, land ownership and so forth. Thus,
controllable generation must account for these constraints, such that the final layout aligns seamlessly with the initial urban
context as well as customized planning concepts.

In the LLM-driven urban planning framework, VLMs assist human planners in the urban layout generation process, as
illustrated in Figure 3a. To fully harness the multi-modal content generation capabilities of VLMs, we propose first constructing
a large-scale conditional text-to-image generation dataset tailored towards urban design, which includes the basemap, layouts,
and corresponding planning description texts collected from existing cities. Using this dataset, we can fine-tune modern VLMs
specifically for urban layout tasks. For example, standard VLMs like CLIP39 can be integrated with generative models and
finetuned on the urban design task. Meanwhile, the finetuning process can be efficiently achieved through low-rank adaption
(LoRA)119. Finetuned VLMs then map planning descriptions of textual prompts by human planners to visual urban designs,
including land use zoning layout (Figure 3b), building footprint (Figure 3c), and 3D urban scene (Figure 3d)120. It is worth
noting that controllable generation is essential for assisting planners and designers, where techniques such as ControlNet121 and
Dreambooth122 can be employed to generate urban layouts that comply with the geospatial constraints of the built environment.

Not all urban design can be computationally generated, and we anticipate VLMs to serve as critical planning support tools
such as GIS once did. For example, planners can iteratively refine the prompts based on the generated designs for further
improvement–wherein discussions with policymakers and other stakeholders play a critical role in aligning urban plans with
broader public interests. VLMs’ multi-modal and controllable generation capabilities have the potential to enable an agile and
flexible urban design process, freeing human planners from labor-intensive layout tasks and allowing them to focus more on
refining conceptual ideas, developing innovative solutions, and coordinating different stakeholders.

Evaluation
Evaluating urban planning is crucial for measuring its impact, delivering actionable feedback, and guiding future improvements.
Traditionally, this evaluation has been subjective, depending on personal judgment such as expert opinions and stakeholder
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interviews. Quantitative metrics–such as economic indicators and environmental quality–have often been limited in scope
or used only in specific contexts, making it difficult to compare outcomes objectively or provide consistent, data-driven
feedback. In addition, the evaluation is typically conducted after the design and construction, thus leaving insufficient room for
improvements. To address this, a more predictive approach is needed to facilitate evaluation in advance, typically involving
multi-dimensional simulations of urban life within city digital twins22, 23, 123–126. Particularly, human activities vary widely
depending on demographic characteristics and are deeply interconnected, further complicating accurate simulations.

Figure 4 illustrates the LLM-driven evaluation process of urban planning using LLM agents, which could allow more
accurate bottom-up simulation of daily experiences and behaviors of urban residents, generating outputs that provide detailed,
quantitative insights into how different planning scenarios may affect city life, including mobility patterns, facility usage,
and so forth. These agents, equipped with advanced decision-making abilities, could simulate everyday activities in the
city environment, surpassing traditional agent-based simulation tools. First, LLM agents can be personalized with diverse
demographic profiles, such as gender, occupation, and age, each representing unique roles with heterogeneous needs and
activities, to fully leverage their role-playing capabilities51 for comprehensive evaluation. Second, LLM agents come equipped
with tools that enhance the effectiveness of simulations. Within urban context, geospatial tools such as navigation and Google
Places API can be utilized to determine routes between locations, and simulate real-world mobility patterns. Third, LLMs
possess memory, allowing them to store historical behaviors, observations, and interactions with other agents. To accelerate
and scale up urban simulation based on LLM agents, it is essential to adopt prompt optimization strategies127 to address the
computational and communication challenges. This memory enables reflection and adaptive learning, improving the simulation
of complex urban dynamics over time. As a result, LLM-driven evaluation in urban planning could provide more accurate
and quantitative feedback on how residents will interact with the city, effectively coupling simulation and decision-making for
continuous iterations.

It is important to recognize that human behavior is inherently uncertain and cannot be fully captured by deterministic
agent-based simulations128. To address this limitation, it is essential to develop evaluation benchmarks that explicitly incorporate
uncertainty and contextual variability. For instance, recent studies have drawn on behavioral economics theories to evaluate
LLM-based decision-making under uncertain conditions, accounting for diverse socio-demographic factors129. In parallel,
stochastic modeling approaches130 can be integrated with LLM agents to better reflect the randomness and variability in human
behavior—such as the probabilistic nature of pedestrian movements and decision-making processes131.

To demonstrate the effectiveness of the above evaluation approach, we employed LLM agents to simulate facility visitation
of two communities in New York and Chicago, and compareed the simulation results with real mobility data2. The frequently
visited locations by LLM agents closely mirrored the groundtruth hot spots observed in empirical human mobility data.
Meanwhile, quantitative metrics such as the 15-minute usage13 of different types of urban facilities, which measures whether
these services are accessible within 15-minute walking or cycling by simulation, were also consistent with the groundtruth for
communities in both New York and Chicago. These results indicate that LLM agent simulations could predict how residents
will use the planned city, offering useful feedback on the quality of urban planning.

Limitations
Despite the promises, transforming the above blueprint into practical tools within the urban planning workflow faces several
technical challenges. First, to build reliable LLMs, millions or billions of training samples are often required, as evidenced
by the scaling laws in LLMs where emergent intelligence is only realized when training data surpasses a critical threshold132.
While remote sensing data, such as satellite images and crowdsourced platforms, has lowered barriers to accessing urban
functionality details133, 134—such as land use types, road networks, and points of interest (POI)—there remains an urgent need
for high-quality urban design data. This includes spatial layouts and corresponding descriptive texts, which are typically owned
by governments and design firms under strict access restrictions. We encourage the urban planning community to increase data
availability by creating open, collaborative platforms for sharing and exchanging urban design data.

Second, besides data accessibility, the substantial computational resources required to train LLMs and VLMs–often
necessitating large number of advanced GPUs–also remain prohibitively expensive for most researchers and practitioners in
urban planning. Therefore, the development of computationally efficient variants of LLMs is essential to reduce training costs.
Particularly, it is a promising direction to build smaller, specialized LLMs tailored to urban planning, as specialized LLMs
usually require far fewer parameters than general-purpose counterparts135, which can substantially lower the barrier to LLM
adoption and make it more widely available to practitioners. It is also worth noting that computational challenge exists in LLM
agent-driven evaluation of urban planning, especially when simulating large urban populations at the individual level22. To
address this, simulation can be conducted for a carefully sampled subset of the population, the results of which can then be
statistically extrapolate to the whole population136. Meanwhile, smaller, specialized, or distilled LLMs can be employed to
reduce computational cost for agent simulation rather than using massive general-purpose LLMs.

Third, to evaluate the effect of LLMs in urban planning, it is crucial to perform accurate simulations of human activities.
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However, human activities exhibit large uncertainty and divergent patterns in different timescales from daily routines to
multi-year trends. Estimating these patterns is particularly complicated when considering longer time spans, which typically
displays larger uncertainty as it involves factors like population change that fundamentally influence the urban dynamics137–139.
Therefore, it poses additional challenges to the usage of LLM agents for evaluating urban plans, both in terms of modeling the
intricate decision-making processes of urban residents and managing the significant computational complexity of large-scale,
high-fidelity simulations.

Last, real-world application of LLMs in urban planning needs to account for various biases, in both the training data and
algorithms, as well as model outputs. Particularly, several specialized LLMs have been proposed to address urban related tasks,
such as mobility prediction101, traffic signal control102, and spatial navigation103. These LLMs rely on large-scale urban data
during pretraining and finetuning, which typically contain significant bias. For example, large cities tend to generate much
more data, which can make LLMs biased towards these population centers, resulting in suboptimal performance when applied
to smaller, less representative cities. In particular, recent research116 has shown that LLMs are geographically biased, especially
for locations with lower socioeconomic conditions. Meanwhile, social biases related to demographics such as gender and racial
bias have also been observed in LLM-generated content140–142, posing significant challenges for their deployment in real-world
scenarios. Therefore, understanding and mitigating the bias in LLMs is essential to enhance their availability to a wider range
of practitioners and residents, and to ensure that these models can be applied equitably across diverse urban environments. In
this regard, careful curation of training data and the implementation of algorithmic fairness techniques such as specialized
fine-tuning142 will be essential to mitigate the negative impacts of bias in urban applications. Moreover, future work should
explore participatory design approaches that actively involve local stakeholders, ensuring that LLM-driven tools are not only
technically robust but also socially inclusive and contextually grounded in diverse urban environments.

To address these limitations, an LLM-driven urban planning framework can be validated through extensive case studies and
ablation analyses across diverse contexts, ranging from large metropolitan areas to smaller, less-represented cities, reducing the
impact of data quality and biases on model performance and ensuring the equitable and effective deployment of LLMs in urban
planning. Additionally, as benchmarking LLMs gains momentum in other fields143, 144, urban planning needs to develop its
own benchmark to objectively evaluate LLM performance.

Final remarks
The practical implementation of LLM-driven urban planning is not a simple technical issue, but involves challenges beyond
technical feasibility and is also shaped by policy and societal considerations145. For instance, the integration of LLM-driven
tools may require updates to existing planning policies and regulatory frameworks to accommodate new methodologies. In
the meantime, the computational resources needed for implementing LLMs can limit accessibility–particularly for small
municipalities or organizations with limited technical infrastructure. Additionally, the acceptance of LLM-driven urban
planning depends on trust from multiple stakeholders including policymakers, urban designers, and the public. Planners may
remain skeptical of AI-generated urban plans, raising concerns about their interpretability, transparency, and alignment with
human-centered urban values. A collaborative approach, where human planners and LLMs work in synergy, can help leverage
AI’s computational strengths while ensuring that urban plans align with human values and societal needs. Future research
should explore human-in-the-loop methods to ensure the transparent and trustworthy generation of urban plans by LLM, and
provide actionable strategies to guide and regulate their usage in urban planning practices.

Planners translate human creativity into tangible urban designs that shape vibrant cities, and LLMs can provide planners with
more effective tools to enhance creativity and boost productivity. Throughout history, the adoption of advanced technologies
has redefined how urban spaces are utilized and how cities are designed. Our Perspective advocates for a collaborative workflow
in which planners push the boundary of urban planning with LLMs connecting existing data, tools, and resources. We believe
that the effective integration of LLMs promises to substantially benefit urban planning, paving the way for more efficient,
inclusive, and sustainable cities that better serve the needs of their residents, and shaping a future where the potential of human
ingenuity is fully realized in the urban environments we create.
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Figure 1. The proposed LLM-driven urban planning framework. The framework consists of three stages, including
conceptualization, generation, and evaluation, driven by LLM, VLM, and LLM agent. In the conceptualization stage, LLMs
produces conceptual ideas expressed with textual descriptions characterizing urban forms and functionalities. In the generation
stage, VLMs generates specific and detailed urban visual designs such as layouts and cityscapes. In the evaluation stage, LLM
agents simulate residents’ activities and output quantitative assessments of the planning effect.
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Figure 2. Conceptualization in LLM-driven urban planning. Planners conduct prompt engineering to devise informative
prompts stating the needs, requirements, and guidelines of urban planning. LLMs pretrained on diverse domains of data are
adopted to respond to planners’ prompt, with enhanced prompting and reasoning strategies like GraphRAG and COT.
Conceptual ideas expressed with textual descriptions are output to assist human planners in accomplishing draft plans.
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Figure 3. Plan generation in LLM-driven urban planning. a. Finetuning VLMs to develop urban design skills using
large-scale datasets collected from real-world planning solutions containing imagery design and textual descriptions. Planners
craft prompts describing their requirements and conceptual ideas, based on which finetuned VLMs generate urban design,
conditioning on the base map to meet geospatial restrictions. b-d. Generated results from initial layout and planners’ prompts
by VLMs in different scenarios, including b. land use zoning layout, c. building footprint, and d. 3D urban scene.
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Figure 4. Evaluation in LLM-driven urban planning. LLM agent is adopted to simulate daily activities and mobility of
community residents, given the generated urban plan. Agents make decisions on their activity/mobility according to the input
personalized profile and their historical memory. Quantitative metrics such as travel distance and facility usage can be
calculated based on the simulated results, providing tangible feedback to planners and LLM/VLM for further iteration.
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