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Supplementary Notes

1 Overview of the method

As illustrated in Figure 1, community spatial planning is a two-stage sequential Markov decision process (MDP). In the first
stage of land use planning, the agent decides the locations of different functionalities one at a time, and the result of land use
planning becomes the initial condition of the next stage. In the second stage of road planning, the agent selects one land use
boundary at each step and builds it into a road. At the end of each stage, a reward regarding the efficiency of the corresponding
spatial layout is calculated.

To address the irregular conditions of urban planning, we construct a contiguity graph to represent a community, with
urban geographical elements as nodes and spatial contiguity relationships as edges. In this way, non-rectangular land blocks
and non-grid road networks can be expressed as vector representations of nodes in the graph. Meanwhile, the edges in the
graph capture the neighbor information which is critical to the community plan. As illustrated in Figure 2, through the graph
modeling, urban planning is reformulated as a sequential MDP of making choices on a dynamic graph, where the agent selects
edges in land use planning and selects nodes in road planning. These actions in the graph space decide the locations of land use
in the original geographic space, and the graph also evolves accordingly. To overcome the challenge of huge action space and
avoid unreasonable spatial plans, we impose a series of constraints in the transformed sequential MDP. Specifically, we fix the
planning order and devise a block-dividing method based on domain knowledge, making the agent focus on the core task of
selecting locations. In addition, we block out unreasonable locations in the action space by imposing action constraints with a
mask indicating feasible locations. With the above design, our agent learns the skills of urban planning in a purely data-driven
way, gradually achieving better layout efficiency through a massive number of trials.

In the sequential MDP, the agent goes through multiple steps to achieve the final spatial plan, and the complete trajectory of
one plan is called an episode. As shown in Figure 3 bottom, at each step t of the episode, the agent receives the state st , outputs
the action at based on its policy π , transits to the next state st+1 and obtains a reward rt . In our proposed framework, the state s
summarizes the current conditions of the spatial plan, which is represented by the constructed urban contiguity graph with rich
node features. The policy π first encodes the current state with a graph neural network (GNN), learning representations for
nodes, edges, and the whole graph (Figure 3 top). Two separate policy networks are designed to take action for the two stages
respectively. Specifically, the land use policy network scores each edge via an edge-ranking MLP, with the score serving as
the selection probability, and similarly, a node-ranking MLP is adopted to score each node in the road policy network (Figure
3 middle). All the intermediate steps except for the last step of each stage have a reward of 0. At the last step of land use
planning, a reward considering the layout efficiency is computed, which is a weighted sum of service accessibility and ecology
friendliness. Meanwhile, at the last step of road planning, a reward regarding traffic efficiency is returned which combines the
density and connectivity of the planned roads. We also adopt a value network to predict the effect of spatial plans, supervised
by the calculated rewards from the environment. During model training, we collect thousands of episodes in each iteration, and
use PPO1 to update the parameters of policy and value networks.

With the graph reformulation of the land use and road layout for the community and the sequential MDP, we can now frame
the adopted community spatial planning model as an optimization-like problem. The descriptions of the optimization process
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are as follows,

Land use planning: (1)

maximize
at

αService(DT )+Ecology(DT ), (2)

subject to ∑
(i, j)∈E

at(i, j) = 1, (3)

at(i, j) = {0,1},∀(i, j) ∈ E, (4)
where Dt = (Vt ,Et), t ≤ T (5)

Dt+1 = Φ(Dt ,at), t ≤ T −1 (6)
Road planning: (7)

maximize
at

Traffic(DT ′), (8)

subject to ∑
i∈N

at ′(i) = 1, (9)

at ′(i) = {0,1},∀i ∈ N, (10)
where Dt ′ = (Vt ′ ,Et ′), t

′ ≤ T ′ (11)
Dt ′+1 = Ψ(Dt ′ ,at ′), t

′ ≤ T ′−1 (12)
(13)

where Dt and Dt ′ are the land use and road designs at the t-th or t ′-th step, at and at ′ are the decisions made for land use
and road planning which are selections of edges and nodes, Φ and Ψ denote the transition of adding new land use and road
segments, and Service, Ecology and Traffic are quantitative objective functions defined in Methods.

2 Experiment details

2.1 Experimental setup
We experiment on one synthetic community and two real-world communities. For the synthetic community (see Figure 1), we
use the basic grids as the initial trunk road conditions and all the blocks enclosed by roads are vacant lands to be planned. The
agent needs to first lay out land use, and then design branch roads with the two planning stages in Figure 1. In addition, we
also experiment on two real-world communities, Huilongguan CP-02 (HLG) and Dahongmen (DHM) in Beijing, to perform
community renovation. Specifically, we replicate the real-world road conditions, reserve residential areas, and let the agent plan
all the community facilities (see Figure 4a and Supplementary Figure 11a. In the real-world experiment setting, the roads are
already built and the agent only needs to accomplish the first stage of land use planning. We trained our model on a single
Nvidia GeForce RTX 4090 graphics processing unit (GPU) for 1000 iterations per stage, which took about 72 h during which
the agent learned to optimize the spatial layout through over 1 million episodes of planning.

2.2 Baseline approaches
We implement multiple existing computational baseline approaches, which are all integrated into our software system.
Centralized heuristic. We first implement a centralized rule-based heuristic which serves as a proxy for the traditional planning
philosophy which tends to concentrate various functions in the center and depend on long-distance commutes by automobiles.
Specifically, the probability of selecting a vacant land block for the current planning step is inversely proportional to the distance
between the vacant land and the community center. From the perspective of our graph modeling framework, one edge is
selected in each step of land use planning stage, and the score of each edge in the centralized heuristic is calculated as follows,

X(ei j) =
1
2
(X(vi)+X(v j)), (14)

s(ei j) =−EucDis(X(ei j),(0,0)), (15)

where X(ei j) denotes the coordinates of the edge which is the middle point of its two endpoints, and we add a minus sign in
front of the Euclidean distance between the edge and the community center to make the score vary inversely with distance. The
sampling probability is obtained through normalization by Equation (12) of Methods. For road planning in the synthetic grid
scenario, since there is no appropriate existing heuristic, we adopt a density-first approach, i.e., the sampling probability of
selecting one land use boundary to construct a road is proportional to the length of the land use boundary so as to build denser
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roads in a fixed number of steps. In our graph modeling framework which samples one node in each step, the score of each
node is thus calculated as follows,

s(vi) = Length(vi). (16)

Similarly, the score is normalized by Equation (14) of Methods for sampling.
Decentralized heuristic. The above centralized algorithm makes community services less accessible for residents living in
marginalized areas of the community. To improve the service efficiency, we further implement a decentralized rule-based
heuristic, which plans a land use type at locations that are far from those already planned sites of the same type. Specifically,
the probability of selecting a vacant land block is proportional to the distance between the vacant land and the same type but
already planned land block. Formally, the score of each edge is calculated as follows,

X(ei j) =
1
2
(X(vi)+X(v j)), (17)

s(ei j) =
1

nTc
∑

Tk=Tc

EucDis(X(ei j),X(vk)), (18)

where nTc is the number of already planned land use of the current type Tc, and we take the average on the distance between the
edge coordinates to those nodes vk that represent land use of type Tc. The sampling probability is computed as Equation (12) of
Methods. Meanwhile, we adopt the same density-first road planning strategy as Equation (16) for the decentralized heuristic in
the synthetic grid scenario.
Genetic Algorithm (GA). The above two heuristics are based on fixed rules and these rules are not optimized for the specific
planning tasks which can lead to sub-optimal performance. Therefore, we further introduce an optimizable GA baseline for
comparison. Specifically, we use two linear layers to score the edges and nodes respectively as follows,

s(ei j) = ⟨wland ,
v0

i + v0
j

2
⟩, (19)

s(vi) = ⟨wroad ,v0
i ⟩, (20)

where wland and wroad are the two linear layers for the two stages, and ⟨·, ·⟩ represents the inner product between the linear
layer and corresponding edge/node embedding. The sampling probability is obtained in the same manner by normalization as
Equation (12) and (14) of Methods. We define the gene as the concatenation of the two linear layers,

gene = wland∥wroad , (21)

which is optimized by the GA. Edges and nodes are selected according to the sampling probability obtained with the gene,
and we calculate the final planning performance by Equation (1)-(2) as the fitness score for the gene, which is used for parent
selection in GA. We use uniform sampling to randomly initialize different weights as the initial populations which is a common
practice in continuous optimization2,3. The weight value is sampled from the range -5 to 5, and the population size is set as
20. We use single-point crossover of two parents and random mutation of genes across generations of populations. Multiple
parameters of GA are searched, including the population size, the number of generations, and the mutation probability. To
accelerate experiments, we stop the evolution if the performance saturates for 10 consecutive generations. Finally, the optimal
individual solution in the whole evolution process is retained to evaluate the performance.
GSCA. We implement a geometric set-coverage problem with single-step adaptations. As the candidate locations for land
use are not static and are continuously changing with newly added facilities (each planned facility will cut off a parcel
from an existing land block, creating new vacant lands of different shapes and exact locations), the 15-minute city planning
problem cannot be addressed by a standard geometric set-coverage model. However, within each planning step, the problem
can be adapted and transformed into a geometric set-coverage-like problem with reasonable approximations by maximizing
the coverage of the given facility type under the current planning conditions. Specifically, we have the following adapted
optimization problem in each step,

GSCA: (22)

maximize
xi

nRZ

∑
i=1

st
RZi

, (23)

subject to
nFA

∑
i=1

xi = 1, (24)

xi = {0,1},∀i ∈ {1,2, · · · ,nFA}, (25)
(26)
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where xi denotes the selection of candidate location, nFA is the total number of candidate locations for the specific facility, st
RZi

means whether the i-th residential area can be served within the 15-minute life circle after the t-th planning step.
DRL w/ MLP. To investigate what role RL and GNN play in our model respectively, we develop a basic RL model which
replaces the GNN state encoder in our method with a simple multi-layer perceptron (MLP). Specifically, this baseline directly
utilizes MLP without message passing and neighbor aggregation as the state encoder, thus it ignores the spatial topology of the
community. Formally, the score of each edge or node is calculated as follows,

s(ei j) = MLPland(
v0

i + v0
j

2
), (27)

s(vi) = MLProad(v0
i ), (28)

where MLPland and MLProad are two separate MLP models for land use and road planning stages respectively. On the one hand,
by comparing DRL w/ MLP against our proposed approach, we can investigate the effect of GNN in modeling the contiguity
relations between various urban geographical elements. On the other hand, DRL w/ MLP can be regarded as optimizing the
genes (parameters of MLP) with RL instead of evolution, thus we also compare DRL w/ MLP against the GA baseline to study
the advantage of RL over traditional approaches in handling the complicated planning task, especially the effect of function
approximation of values and efficient exploration in the huge action space.

2.3 Comparison with baseline methods
We implement the above baseline approaches, and evaluate their performance in multiple scenarios including both one synthetic
grid planning task and two real-world community renovation planning tasks to compare with our proposed method. Specifically,
for the two heuristics, we replace the policy network of our framework with manually defined rule-based policies. For the GA
method, we implement the algorithm with PyGAD4 and integrate it with our framework. For the DRL w/ MLP baseline, we
change the state encoder in our framework from GNN to MLP. To achieve a fair comparison, all the methods interact with
the same spatial planning environment as our proposed DRL approach. After we obtain the generated plans, we compute the
spatial efficiency metrics to compare their planning performance.

As introduced in the paper, Table 1 shows the planning performance on three planning scenarios where our DRL method
outperforms all the baseline methods with significant improvements on all metrics. Supplementary Figure 3-4 demonstrate
the generated spatial plans from all the methods for the HLG and DHM community respectively, as well as the quantitative
performance evaluation. We can observe that baseline methods tend to yield more clustering land use functions, such as the
recreation cluster in Supplementary Figure 3a and the school cluster in Supplementary Figure 4c. On the contrary, as shown
in Supplementary Figure 3e and Supplementary Figure 4e, the spatial plans generated by our approach successfully avoid
clusters of the same land use function. Particularly, we illustrate the planning process of our framework for the two real-world
communities in Supplementary Figure 1 and Supplementary Figure 2 respectively. We can find that the DRL agent lays out
different land use functions according to the predefined planning order introduced in Section M3.3, with each land use function
arranged in a dispersing manner. Experimental results compared with baseline methods verify that our DRL approach learns
the decentralized skill of urban planning, which achieves better spatial efficiency with respect to traffic, service and ecology.

2.4 Comparison with professional human designers
As most of the spatial plans are designed by human experts currently, we also conduct experiments to compare our DRL
framework with human experts. We recruit 8 professional human designers in both Britain and China to accomplish the
planning tasks for the two real-world communities, HLG and DHM. Specifically, the 8 participants are all experienced designers,
working for top planning institutes including University College London, Beijing Tsinghua Tongheng Urban Planning & Design
Institute, Chongqing Planning & Design Institute, and School of Architecture and Urban Planning, Chongqing University.
Each participant starts planning from the same initial conditions as our DRL framework, and accomplishes the planning task
according to the same planning needs and planning requirements as our DRL framework with the help of CAD and GIS
software. For the spatial plans generated by human designers, we compute the spatial efficiency based on the same definitions
of service and ecology metrics.

Supplementary Figure 5 demonstrates the spatial plans for the real-world HLG community generated by human experts and
our DRL method, as well as their corresponding spatial efficiency performance. With respect to service efficiency, our DRL
method outperforms 7 out of 8 professional designers, and achieves the same performance as the best designer. Specifically, as
in Supplementary Figure 5j, our method and designer H7 attains 0.71 in service efficiency, which significantly outperforms
the expert average of 0.64 with relative improvements about 9.86%. With respect to ecology efficiency, our DRL method
outperforms all 8 professional designers with significant improvements, 17.74% higher than the best designer and 57.41%
higher than the designer average. The service efficiency metric is the average accessibility over five different basic services,
and we also inspect the accessibility for each of the services in Supplementary Figure 5k. We can observe that our DRL agent
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generates a plan with a more balanced accessibility of different services, while it is challenging for human designers to achieve
a balanced trade-off between different objects. Similarly, Supplementary Figure 6 illustrates the results on the DHM community
by human experts and our DRL method. Results show that our method beats all 8 professional designers on both service and
ecology metrics. Specifically, as in Supplementary Figure 6j, our DRL method improves the service efficiency by 13.64%
and 19.52% against the best and average designer performance respectively. For ecology efficiency, relative improvements
against the best and average designer are 15.38% and 59.65%. Supplementary Figure 6k illustrates the specific accessibility
of five basic services, where our DRL method still achieves a much more balanced performance, with 3 out of 5 services
ranking the highest against all human designers. Human designers accomplish the planning task based on experience and
subjective intuition, which can be influenced by the traditional centralized planning concept, yielding clusters of the same
land use function, as shown in Supplementary Figure 5a and Supplementary Figure 6b. Different from human designers, DRL
method guided by quantitative reward on spatial efficiency can optimize for higher efficiency in a data-driven way, which can
get rid of the influence of traditional planning concepts, achieving more decentralized planning solutions.

2.5 More experimental results on 15-minute city
As introduced in Section M3.2, we conduct experiments under different planning requirements, i.e., different numbers of
service facilities, and investigate the accessibility of services in such different service provisions. In actual community spatial
planning, more facilities mean it is easier to achieve 15-minute city. However, the community may not be able to support so
many facilities due to many conditions, resulting in problems such as low utilization rates and poor accessibility. On the other
hand, fewer facilities may lead to high utilization rate while reducing accessibility. The exact number of facilities depends
on the actual situation, and we study the planning performance under both low and high service needs in our experiments.
Specifically, Figure 4 shows the planning performance of our DRL method in achieving 15-minute city for the HLG community,
and the corresponding generated spatial plans under given different service needs are illustrated in Supplementary Figure 9. We
can observe that even with a low or medium needs of facilities, our DRL model learns to layouts these facilities in different
areas of the community. As the needs increase, the spatial plan is getting more decentralized.

We also conduct experiments on 15-minute city for the DHM community renovation task. As shown in Supplementary
Figure 11a, we reserve most of the residential blocks and a few large-area facilities, and re-design the remaining areas to
improve service and ecology efficiency. Similar to the experiments on the HLG community, we utilize a well-trained model and
conduct model inference under multiple settings with different service needs (low, medium, high and mix). Supplementary
Figure 11b-c illustrate the specific needs and the resulting accessibility of different service types. As the needs change, our
method can generate spatial plans with varying service accessibility accordingly. And the accessibility of different service
facility types can be customized by feeding a mixed needs to our model, e.g., see the needs of school and hospital and the
corresponding accessibility of education and medical care. Supplementary Figure 11d-g show the generated spatial plans
under different service needs, where a consistent decentralized planning strategy can be observed which guarantees superior
performance in achieving 15-minute city.

2.6 Details of model transferability
We study model transferability from two perspectives. The first one is the transfer between different scales, from a small
community to a large community. The second one is the transfer between different forms, from simple road and land conditions
to complicated ones. These two types of transferability enable us to train a model in a small-scale synthetic environment and
apply it to generate plans for different kinds of large-scale real-world communities. The GNN state encoder and policy networks
in our model operate on every node and edge embedding separately, thus the number of model parameters is independent
of both the graph size (community scale) and the graph topology (community form). Owing to the generality of the graph
modeling (Figure 2), our model is naturally suited for transfer between different planning environments, since we can finetune a
pretrained model in new communities without introducing new model parameters.

To study model transferability, we first construct a simulated grid scenario with only 3×3 blocks which is smaller than the
4×4 blocks in Figure 1. We pretrain our DRL model in this small-scale synthetic environment for 300 iterations which take
about 24h, and utilize the pretrained model as the start point for transfer. For the first case of transfer between different scales,
we load the parameters of the pretrained model and finetune it in the 4×4 blocks grid community, with the community area
increased by 44% and the episode length increased by nearly 100%. For the second case of transfer between different forms,
we use the same pretrained model from 3×3 blocks grid community, and finetune it in the real-world renovation scenario in
Figure 4a, where the road and land use conditions become much more complicated, i.e., the roads change from simple grid
form to irregular form, and the land use conditions change from all vacant lands to existing residential blocks. For both cases,
we compare the planning performance of finetuning the pretrained model against training a model from scratch with randomly
initialized model parameters.

6/25



2.7 Training with different data volume
Our model is primarily a data-driven method, which depends on extensive interactions with the environment to learn urban
planning skills. The data volume, i.e. the total number of interactions between our model and the environment during the
training process, serves as a key factor in the final planning performance. During the model training process, the agent goes
through hundreds of iterations, and accomplishes thousands of episodes in each iteration, with about 100 steps per episode (one
episode is the generation of a complete spatial plan starting from the same initial condition), meaning that the overall data
volume easily exceeds one million. Such a large amount of data is necessary for the agent to perform sufficient exploration
in the huge action space, so as to accurately predict the value of different spatial plans and finally obtain a decent policy.
Supplementary Figure 12 shows the episodic reward achieved under different scales of training samples. In the first half of
model training (before 250 iterations), the agent just warms up and explores different strategies, thus the performance oscillates
under both larger (7.5 million) and smaller (3.75 million) training samples. As model training continues, the difference between
large and small sample scales starts to emerge, with the agent’s performance under large data volume gradually improving
while the performance under small data volume remains in oscillation. Results in Figure 12 demonstrate the essential role of
data volume in urban planning with reinforcement learning, and suggest that larger quantitative training data will eventually
lead to better spatial efficiency.

In fact, the volume of data represents the extent to which the DRL agent explores the action space. Since the action space is
extremely large, the agent needs to interact with the environment extensively to obtain sufficient training data, which guarantees
enough exploration and finally achieves layouts with higher spatial efficiency. To inspect how the agent learns the skills of
spatial planning, we visualize the learning process of our DRL method by investigating the spatial plans obtained at different
iterations in the whole training procedure.

Supplementary Figure 13 and Supplementary Figure 14 demonstrate the generated spatial plans at different iterations for the
real-world HLG and DHM communities, respectively. At iteration 1, the agent has not yet learned the skills of urban planning,
thus it just expands in a local area, which results in all the land use functions of the same type arranged next to each other
(see Supplementary Figure 13a and Supplementary Figure 14a). As the training progresses, the agent starts to discover that
decentralized planning can achieve higher rewards during the exploration, so some land use functions begin to disperse. For
example, the business and recreation area in Supplementary Figure 13c and the school area in Supplementary Figure 14c all
begin to be arranged at different locations in the community. However, without sufficient explorations which usually take about
400 iterations, the generated spatial plans still contain a certain number of clusters of the same land use function, e.g., clinic at
the southern (bottom) area of HLG community in Supplementary Figure 13c and recreation at the northeastern (top right) area
of DHM community in Supplementary Figure 14d. After training with enough samples that usually take over 500 iterations, the
agent becomes able to make more decent arrangements for various land use functions, and different services are laid out in a
decentralized way (see Supplementary Figure 13f and Supplementary Figure 14f). From the results in Supplementary Figure
13g and Supplementary Figure 14g, we can observe that the two spatial efficiency metrics are continuously improved as the
training progresses. Through the visualization of the learning process, we further verify the necessity of large-scale training
samples for DRL models to master the skills of urban planning.

Due to the limitation of computing resources, all the experiments are conducted on a single Linux server with one single
GPU, and the training for spatial layout of one community usually takes about 48h. After the model converges, the evaluation
performance on a community can be obtained through model inference within less than 10s. We believe that better performance
can be achieved if larger computing resources are adopted, such as collecting training samples using distributed clusters and
training the model with multiple GPUs on multiple servers.

2.8 Hyper-parameter study
In this section, we investigate the effect of several critical hyper-parameters in our framework, including reward weight, GNN
layer, and GNN node dimension.

In land use planning, the reward function is a comprehensive evaluation of spatial efficiency, which is a weighted sum of
service and ecology. As shown in equation (1) of the paper, we introduce a hyper-parameter α to adjust the ratio between the
importance of the two aspects, with larger α emphasizing more on service efficiency and smaller α emphasizing more on
ecology efficiency. We train three different models with the ratio between service and ecology set as 2 : 1 to 4 : 1 for the HLG
community, and evaluate their corresponding planning performance. Supplementary Figure 15 demonstrates the generated
spatial plans under different reward weight ratios, as well as the service and ecology metrics. As shown in Supplementary
Figure 15a, we can observe that with lower α , i.e., ecology is more important, the DRL agent learns to leave vacant lands at
different locations of the community that will finally be filled as open space, which in turn improves the ecology metric. As
we increase the value of α , i.e., service becomes more important, and the DRL agent learns to arrange these previous vacant
lands as service facilities to improve their accessibility. Particularly, as shown in Supplementary Figure 15c, the DRL agent
leaves many vacant lands next to the existing central park , while filling these areas as open space. These open spaces do not

7/25



bring much improvements to the ecology metric since their ecological serving range (ESR, see equation (19) of Methods) is
largely overlapped with the ESR of the center park. Supplementary Figure 15d-e show the service and ecology metrics of the
generated plans under different reward weight ratios, where we can observe that the service metric increases and the ecology
metric decreases as the reward weight ratio changes from 2 : 1 to 4 : 1. Experiments on different reward weight ratios validate
the flexibility of our framework, where we can adjust the value of α to realize spatial plans with different emphasis on service
or ecology.

The GNN state encoder is a crucial component of our framework, which learns representations for different geographical
elements in the community, and supports both value prediction and action selection. Particularly, two hyper-parameters of
GNN, the number of GNN layers and the GNN node dimension, determine the topological modeling ability and expressive
power of GNN. We investigate the planning performance of our framework under different numbers of GNN layers and node
dimensions, and the results are shown in Figure 16. Specifically, as shown in Figure 16a, setting GNN layer as 0 (no message
passing, i.e., a trivial MLP model) achieves much worse performance (-8.38% reward) than the models with at least one GNN
layer, proving the essential role of message passing and neighbor aggregation in GNN. Meanwhile, too few GNN layers (e.g.,
only 1 layer) makes the perceptive neighbor field not large enough to acquire effective topological information; while too
many GNN layers (e.g., 3 layers) can lead to over-smoothing which deteriorates the planning performance. Therefore, setting
the number of GNN layer as 2 achieves the best reward. Similarly, as shown in Figure 16b, too low node dimension (e.g., 4)
provides insufficient expressive power of GNN, which results in inferior performance. Increasing the node dimension to 8 and
16 can significantly improve the expressive ability and makes much progress in spatial efficiency (+9.31% reward). Further
increasing the node dimension to 32 can overfit the model to the noise in the training samples and achieve worse performance.

2.9 Demonstration of human-AI collaborative workflow
We have shown that AI can outperform professional human designers in optimizing spatial efficiency in a huge solution space.
But human designers are good at abstract prototyping, thus we propose a human-AI collaborative workflow to take advantage
of their respective expertise, as illustrated in Supplementary Figure 7a. Conceptual planning described by center and axis is
first provided by human designers. Then we train DRL models to generate spatial plans that satisfy the planning concepts
and maximize spatial efficiency. Human designers only need to adjust the plans generated by AI without changing the full
layout, e.g., adjusting the shapes of a few blocks. To verify the effectiveness of this workflow, we also compare it with a
full human labor workflow. We invite 5 professional human designers to accomplish the planning task, who start planning
given the same initial conditions, constraints, and planning concepts as our DRL model. For our DRL model, we take the
generated plans from the best 5 model checkpoints. We conduct a comprehensive evaluation of the spatial plans generated by
professional human designers and AI, including both objective metrics and subjective blind tests. For the objective metric, we
calculate the efficiency of service and ecology as equations (18) and (22) of Methods. For subjective evaluation, we invite 100
post-graduate level human designers to participate in the evaluation, where they choose one of two spatial plans based on their
subjective preference. The evaluation is conducted in blind manner, i.e., the participants are unaware of whether the spatial plan
is generated by human designers or AI.

Supplementary Figure 8 shows the generated spatial plans by human designers and our DRL model for the two real-world
communities. We calculate the spatial efficiency of these plans, and Supplementary Table 5 shows the results as well as the
time cost for training and planning. We can observe that our DRL model achieves competitive performance in objective metrics.
Specifically, for the DHM community, the best DRL solution achieves Pareto optimal against all spatial plans with significant
improvements (service +12.3%, ecology +5.0%). For the HLG community, no single spatial plan attains Pareto optimal, while
our DRL model achieves comparable performance to professional human designers, and improves the ecology efficiency by
14.3%. Nevertheless, a human designer requires about ten years of professional training, and spends about 50-100 minutes
to accomplish the two planning tasks. On the contrary, it only takes about two days of training to obtain an AI model with
superior performance, which can generate decent spatial plans in less than 1 second. We can conclude that AI can achieve
comparable and even better performance on objective metrics than human designers in the heavy and specific planning step,
and greatly help human designers to improve their planning effect and efficiency. The blind test is also conducted on the 10
groups of spatial plans by 100 post-graduate level human designers, and the results are shown in Figure 7c-d. Contrary to
intuition, professional human designers did not beat the AI model. There is no clear preference in most cases, where AI tends
to gain slightly more votes. In a few cases, AI wins much more votes than human designers, e.g., group 2 and group 3 of
HLG community. Through evaluation of both objective metrics and the subjective blind test, we verify the feasibility of our
proposed human-AI collaborative workflow, in which AI can significantly improve the productivity of human urban designers.
It is worthwhile to notice that we only conduct a simplified demo of the workflow, whereas practical planning can be more
complicated, such as more diverse planning concepts, opinions from stakeholders, and multiple rounds of revisions. Fortunately,
the high flexibility of our DRL framework, e.g. the customized reward functions, can help to extend the simplified workflow to
real-world applications of human-AI collaborative urban planning.
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2.10 Integration with manually defined rules
Despite planning concepts and styles that have been investigated in the paper, urban planning in practice can be more complicated
since there are other planning rules or restrictions to be considered. These rules from political realities are usually expressed as
spatial relationships, e.g., some land use types are not suitable to be arranged next to each other, such as neighboring hospital
and school will be detrimental to students’ physical and mental health. In fact, experienced human designers can list dozens or
hundreds of rules, which need to be considered carefully in practical spatial planning, and these manually defined rules are
a part of domain knowledge. Fortunately, our framework is flexible and fully compatible with manually defined rules, and
these proposed rules from political realities can be well received and easily incorporated. Specifically, as introduced in the
model design, we add a mask in the action space to indicate all feasible actions and avoid unreasonable actions, thus actions
that do not satisfy planning requirements are blocked out and will never be chosen by the agent. In our experiments, we set the
action mask as False for edges except for L-J edges linking a vacant land and a junction in land use planning task. In the road
planning task, we set the action mask as False except for S nodes of land use boundaries. Similarly, we can implement the
above manually defined rules by adding extra action masks.

We implement the above school-and-hospital rule by action mask to demonstrate the effect of integrating manually defined
rules with our framework. Specifically, we take a model that is trained without the rule inserted. Therefore, as shown
in Supplementary Figure 10a, although the generated community plan achieves decent performance in spatial efficiency
(service=0.6390, ecology=0.7147), it violates the above rule, i.e., dashed black boxes show the positions where the DRL agent
lays out a school and a hospital/clinic together. We then finetune this model and add a rule-aware action mask that indicates the
above school and hospital rule during finetuning. In other words, when planning a school, we set the mask values of land blocks
as false if they are near a hospital. As shown in Supplementary Figure 10b, the final generated spatial plan is fully consistent
with the planning rule, where schools and hospitals/clinics are separated by other land use functionalities. Meanwhile, the
service efficiency is not getting worse (service=0.6400, +0.001), and the ecology efficiency gets even better (ecology=0.7487,
+4.76%). In this experiment, we only add one single rule to showcase the integration of planning rules, and this approach can
be easily extended to hundreds of planning rules in practice. For example, when planning business areas, we can set the mask
values as true for vacant blocks that are within a certain distance of a subway station, and thus we can place business zones
near subway stations to maximize their economic benefits. It is worthwhile to notice that planning rules can be combined with
planning concepts in Supplementary Figure 7b, and it can also be introduced into the proposed workflow. Human designers can
collaborate with our proposed AI model by defining planning rules and designing prototypes, and let the AI agent accomplish
the heavy work of generating spatial layouts.
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Supplementary Figures
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Supplementary Figure 1. Demonstration of the spatial planning process of our DRL approach for the real-world
HLG community. We show the snapshots of the spatial plan at those steps when the DRL agent finishes each land use function
in the planning episode. a, Initial state of HLG community. b-h, Snapshots when the DRL agent finishes the layout of hospital,
school, clinic, recreation, park, office, business and open space. i, fill the remaining vacant land as open space.
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Supplementary Figure 2. Demonstration of the spatial planning process of our DRL approach for the real-world
DHM community. We show the snapshots of the spatial plan at those steps when the DRL agent finishes each land use
function in the planning episode. a, Initial state of DHM community. b-h, Snapshots when the DRL agent finishes the layout of
hospital, school, clinic, recreation, park, office, business and open space. i, fill the remaining vacant land as open space.
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Supplementary Figure 3. Demonstration of generated plans of different methods for the HLG community. a-e,
generated plans of four baseline methods and our DRL method. f, service efficiency metric of all the methods. f, ecology
efficiency metric of all the methods.
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Supplementary Figure 4. Demonstration of generated plans of different methods for the DHM community. a-e,
generated plans of four baseline methods and our DRL method. f, service efficiency metric of all the methods. f, ecology
efficiency metric of all the methods.
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Supplementary Figure 5. Spatial plans for HLG community designed by 8 professional human designers and our
DRL method and their corresponding planning performance. a-h, the spatial plans generated by human designers. i, the
spatial plan generated by our DRL method. j, service and ecology efficiency performance comparison between 8 human
designers and our DRL method. k, service accessibility comparison of five basic residential needs between 8 human designers
and our DRL method.
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Supplementary Figure 6. Spatial plans for DHM community designed by 8 professional human designers and our
DRL method and their corresponding planning performance. a-h, the spatial plans generated by human designers. i, the
spatial plan generated by our DRL method. j, service and ecology efficiency performance comparison between 8 human
designers and our DRL method. k, service accessibility comparison of five basic residential needs between 8 human designers
and our DRL method.
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Supplementary Figure 7. Demonstration of incorporating AI into the workflow of urban planning. a, the diagram of
human-AI incorporating workflow. b, the predefined planning concept of the HLG and DHM community.
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Supplementary Figure 9. Demonstration of generated community renovation plans under different needs of facility
types. We vary the needs of five different facility types (school, hospital and clinic, business, office, recreation) which
correspond to the five basic services (education, medical care, shopping, working, entertainment). We investigate (a) low needs
(2 per facility), (b) medium needs (4 per facility), (c) high needs (8 per facility) and (d) mix needs (10, 5, 4, 8, 3 for the five
facility types). The service accessibility of these plans are shown in Figure 4d.
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Supplementary Figure 10. Integration with the rule-aware action mask for the HLG community. We demonstrate the
generated spatial plans (a) before and (b) after adding the rule-aware action mask.
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Supplementary Figure 11. Demonstration of community renovation and 15-minute city planning for the DHM
community. a, Community renovation. We replicate the roads, residential blocks and large-area facilities of the DHM
community, and leave other areas as vacant lands for renovation. The agent places different types of facilities to improve the
accessibility of service for residents in the community. b, Facility needs. We vary the needs of five different facilities (school,
hospital, business, office, recreation) which correspond to the five basic services (education, medical care, shopping, working,
entertainment). We investigate low needs (3 per facility), medium needs (5 per facility), high needs (7 per facility) and a mix
needs (8, 4, 4, 6, 6 for the five facilities). c, Service accessibility performance under different needs. We show the 15-minute
circle index for the five basic needs of the generated community plan under different facility needs. The radical value means the
proportion of residential blocks that can access the corresponding service with 15 minutes. d-g, Generated spatial plans
under different needs. We demonstrate the generated community renovation plans under different needs of facility types.
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Supplementary Figure 12. Performance of different training samples. The episodic reward of training with 7.50 million
samples versus training with 3.75 million samples. Larger data volume plays a critical role in achieving better planning
performance.

19/25



a b c

iteration = 1

iteration = 614

RZ

BU
OF

SC
HO
CL

RE
PA
OP

d
iteration = 10 iteration = 100

iteration = 300iteration = 200

e f

g

1 10 100 200 300 614
0.4

0.5

0.6

0.7

0.8

0.9 service
ecology

iteration

va
lu
e

Supplementary Figure 13. Demonstration of generated community renovation plans at different training iterations
and their corresponding spatial efficiency performance for the HLG community. a-f, The obtained spatial plans at
different iterations. The DRL agent gradually learns to lay out facilities and parks in a more decentralized manner. g, the
corresponding planning performance at different iterations. We show the corresponding service and ecology metric values
for the spatial plans at different iterations. The spatial efficiency with respect to both service and ecology continues to improve
during the training process.
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Supplementary Figure 14. Demonstration of generated community renovation plans at different training iterations
and their corresponding spatial efficiency performance for the DHM community. a-f, The obtained spatial plans at
different iterations. The DRL agent gradually learns to lay out facilities and parks in a more decentralized manner. g, the
corresponding planning performance at different iterations. We show the corresponding service and ecology metric values
for the spatial plans at different iterations. The spatial efficiency with respect to both service and ecology continues to improve
during the training process.
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Supplementary Figure 15. Demonstration of generated community renovation plans with different reward weights
for the HLG community and their corresponding planning performance. a-c, The final generated spatial plans under
different reward weight ratios. We show the obtained spatial plans trained with reward ratio between service and ecology
from 2:1 to 4:1. d-e, Service and ecology metrics values. We show the corresponding service and ecology metric values for
the spatial plans with different reward weights. The performance can be successfully tuned towards service of ecology by
changing their reward weights.
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Supplementary Figure 16. Hyper-parameter study. We demonstrate the evaluation reward of our model under different
number of (a) GNN layers and (b) GNN node dimensions.
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Supplementary Tables

Supplementary Table. 1. Abbreviation and color for different land use functions

Land use function Abbreviation Color

Residential RZ IIIIIII
School SC IIIIIII

Hospital HO IIIIIII
Clinic CL IIIIIII

Business BU IIIIIII
Office OF IIIIIII

Recreation RE IIIIIII
Park PA IIIIIII

Open Space OP IIIIIII

Supplementary Table. 2. Abbreviation and color for road segment and land use boundary

Segment item Abbreviation Color

Road R ————–
Boundary B ————–

Supplementary Table. 3. Example of planning needs and requirements

Name Residential School Hospital Clinic Business Office Recreation Park Open Space

Needs 60% 4 1 3 2 3 3 15% 1
Requirements 20000 10000 10000 2000 10000 10000 2000 15000 2000
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Supplementary Table. 4. Information about recruited professional human designers

ID Educational Background Registered Working Years #Participated Projects

H1 PhD Yes 9 25
H2 Master Yes 12 80
H3 Master Yes 13 100
H4 PhD Yes 4 10
H5 Master Yes 3 21
H6 PhD Yes 9 23
H7 Master Yes 7 47
H8 Master Yes 11 18

Supplementary Table. 5. Objective performance in human-AI collaborative workflow

Planner Real-world HLG Real-world DHM Training Time Cost Planning Time Cost
Service Ecology Service Ecology

Human Designer 1 0.60 0.70 0.55 0.80 ~10 years ~83 minutes
Human Designer 2 0.70 0.50 0.57 0.76 ~10 years ~105 minutes
Human Designer 3 0.70 0.47 0.55 0.72 ~10 years ~105 minutes
Human Designer 4 0.66 0.49 0.51 0.60 ~10 years ~53 minutes
Human Designer 5 0.67 0.45 0.54 0.47 ~10 years ~75 minutes

DRL solution 1 0.67 0.76 0.57 0.79 ~2 days <1 second
DRL solution 2 0.67 0.75 0.63 0.84 ~2 days <1 second
DRL solution 3 0.62 0.80 0.61 0.80 ~2 days <1 second
DRL solution 4 0.62 0.80 0.64 0.84 ~2 days <1 second
DRL solution 5 0.64 0.67 0.61 0.74 ~2 days <1 second
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