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Traditional approaches in complexity science 
struggle to capture emergent phenomena, but 
abductive reasoning — now computationally 
feasible through artificial intelligence — offers 
a new pathway for discovery.

Emergent phenomena, such as bird flocking or ecosystem collapse, 
arise from collective dynamics that have properties absent at the 
individual level. Although the macroscale patterns are observable, 
their underlying mechanisms remain hidden. Despite major advances 
in systems theory, chaos theory and network science, it is still not 
generally possible to explain how microscale interactions give rise  
to macroscale patterns1.

We want to bring attention to a source of the problem that has been 
relatively neglected: the structural limits of deduction and induction. 
These are the two dominant modes of formal scientific reasoning, but 
neither is well suited to connecting local processes with emergent 
global behaviours. Fortunately, there is another type of reasoning: 
abductive reasoning, or ‘inference to the best explanation’. Consider 
a simple example: you encounter a traffic jam on an urban road, but it’s 
not rush hour. You hypothesize an accident occurred ahead that would 
explain the unexpected congestion. This reasoning moves backwards 
from observation to probable cause, generating testable explanations 
for puzzling phenomena.

Traditionally, a limitation of abductive reasoning is the human 
ability to devise and test hypotheses, but we believe that augmenting 
abductive reasoning with artificial intelligence (AI) provides a way 
forward. Abductive AI can generate and test non-obvious hypoth-
eses about hidden mechanisms that drive emergence, opening new 
directions for complexity science. How does it work?

The limitations of deduction and induction
Deduction is a process that starts with general principles and derives 
specific outcomes. Physics exemplifies its power: in principle, given 
laws and initial conditions, one could deduce planetary orbits. Yet, 
in practice, the inner solar system is a complex, chaotic system, and 
predicting far-future planetary trajectories remains an unresolved 
challenge2. Chaos theory illustrates both its strengths and its weak-
nesses: we can deduce the sensitivity of orbital evolution to initial 
conditions, but not the exact, long-term trajectories of individual 
planets. Similarly, the Barabási–Albert network model3 deduces 
power-law degree distributions from preferential attachment but 
cannot predict which nodes become hubs or when cascades occur. 
Deduction thus falls short when local nonlinearities drive macroscale 
emergence.

Induction instead generalizes from observations to broader rules. 
Inductive approaches include the use of reservoir computing to pre-
dict chaotic dynamics4 and sparse regression for discovering govern-
ing equations5. These approaches learn intricate relationships from 
observational data without predefined theoretical frameworks. Yet, 
induction cannot go beyond the available data, and it falters when key 
microscale data are unobservable — as in the climate system, where 
abrupt shifts can be detected but underlying processes remain hid-
den. Induction alone cannot reveal unmeasured mechanisms behind 
emergent patterns.

What is abductive reasoning?
Abduction, as articulated by Charles Sanders Peirce, generates plausi-
ble hypotheses to explain observed phenomena. Whereas deduction 
and induction operate within established premises or observed data, 
abduction ventures beyond them to propose candidate mechanisms for 
unexpected patterns. Working backwards from macroscale patterns, 
it proposes microscale mechanisms that can be tested and refined. 
However, in situations involving scientific discovery, the vast hypoth-
esis spaces involved and the volume of observational data often make 
this approach intractable for human cognition. For example, think-
ing again about climate science, rare abrupt shifts are hidden within 
massive observational records, yet innumerable interacting feedback 
mechanisms — such as ocean–atmosphere couplings, or the carbon 
cycle — could plausibly account for them.

How can AI power abductive reasoning?
AI may expand the range of problems abductive reasoning can 
tackle. Foundation models process information at unprecedented 
scales, enabling them to characterize nonlinear relationships 
across massive datasets6. Reinforcement learning explores large 
hypothesis spaces and uncovers new strategies beyond human 
priors, from the Go strategies of AlphaGo to more recent discover-
ies of new matrix multiplication algorithms7. Interpretable AI tools 
extract symbolic knowledge from black-box models, revealing 
human-understandable insights8. Together, these advances transform 
abduction into a computationally viable methodology for complexity 
science.

We envision an abductive AI framework that discovers underlying 
mechanisms of emergent phenomena, consisting of three synergistic 
subsystems (Fig. 1). The workflow proceeds iteratively:

•	 Hypothesis generation. The first AI subsystem explores hypoth-
esis spaces to generate the microscale hypothesis, that is, a compu-
tational model. For example, deep reinforcement learning learns 
optimal exploration policies for hypothesis spaces, while diffusion 
generative models generate hypotheses through progressive 
refinement from noise. Unlike human intuition constrained by 
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contribution to macroscale system resilience10. These expressions 
revealed how resilience emerges from local structures and dynamical 
properties.

The path forward
For complexity science, abductive AI should not be positioned as an 
autonomous discovery engine, but as a scientific co-pilot. Research-
ers define objectives and constraints, while AI explores hypotheses 
at computational scale. Human expertise remains central for guiding 
searches and validating results.

Challenges remain. Interpretability assumes viable explanations 
can be formalized into human-understandable theories about which 
scientists can reason qualitatively without exact calculations8 — a con-
dition not always met for computationally irreducible systems such as 
protein folding or neural networks. In such cases, predictive accuracy 
may still outpace mechanistic insight.

Even so, the integration of AI with abductive reasoning signals a 
methodological shift. By combining human creativity with machine 
computation, abductive AI offers a powerful framework for decoding 
emergence across domains — from network science and systems biol-
ogy to urban systems and Earth system science — and for generating 
genuine explanations of emergent phenomena.
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knowledge limits, prior experience and computational limitations, 
an AI system can exhaustively search vast hypothesis spaces and 
discover non-obvious candidates.

•	 Validation. A second AI subsystem receives each candidate 
hypothesis and simulates its macroscale consequences, rapidly 
testing whether the proposed microscale mechanism would 
generate the observed macroscale phenomena. This process 
leverages diverse AI architectures — such as neural operators, 
graph neural networks and physics-informed neural networks — 
to predict nonlinear dynamics and complex interactions directly 
from data, accelerating validation compared to traditional 
first-principles methods.

•	 Refinement. The discrepancy between the predictions of the sec-
ond subsystem and observed macroscale data serves as feedback, 
guiding the first subsystem to refine its hypothesis generation in 
subsequent iterations until the model accurately reproduces the 
observed macroscale patterns.

•	 Interpretation. A third AI subsystem translates computational 
results into explicit formulas or causal rules, yielding testable 
mechanistic understanding of how microscale processes govern 
system behaviour. For example, symbolic regression extracts 
symbolic formulas, while post-hoc attribution identifies key  
mechanistic relationships.

The outcome is parsimonious theories that both predict and 
explain emergent phenomena.

Illustrative application
An example demonstrates the promise of abductive AI in addressing 
important emergence problems with a long history. In systems such as 
ecosystems and power grids, it is essential to be able to identify criti-
cal nodes whose failure triggers collapse9. Our framework trained AI 
agents to learn optimal node removal policies with graph neural net-
works and deep reinforcement learning, then used symbolic regression 
to derive interpretable formulas quantifying each node’s microscale 
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Fig. 1 | An AI-empowered abductive reasoning framework for discovering  
emergence in complex systems. The process yields parsimonious theories  
that both predict and explain specific emergent phenomena. AI is used in three  
systems, AIS1, AIS2 and AIS3, which correspond to the three systems outlined 
in the main text. RL, reinforcement learning.
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