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Traditional approaches in complexity science
struggle to capture emergent phenomena, but
abductive reasoning — now computationally
feasible through artificial intelligence — offers
anew pathway for discovery.

Emergent phenomena, such as bird flocking or ecosystem collapse,
arise from collective dynamics that have properties absent at the
individual level. Although the macroscale patterns are observable,
their underlying mechanisms remain hidden. Despite major advances
in systems theory, chaos theory and network science, it is still not
generally possible to explain how microscale interactions give rise
to macroscale patterns’.

Wewantto bringattention toasource of the problem thathasbeen
relatively neglected: the structural limits of deduction and induction.
These are the two dominant modes of formal scientific reasoning, but
neither is well suited to connecting local processes with emergent
global behaviours. Fortunately, there is another type of reasoning:
abductive reasoning, or ‘inference to the best explanation’. Consider
asimple example: you encounter atrafficjamon anurbanroad, butit’s
not rush hour. You hypothesize anaccident occurred ahead that would
explain the unexpected congestion. This reasoning moves backwards
from observation to probable cause, generating testable explanations
for puzzling phenomena.

Traditionally, a limitation of abductive reasoning is the human
ability to devise and test hypotheses, but we believe that augmenting
abductive reasoning with artificial intelligence (Al) provides a way
forward. Abductive Al can generate and test non-obvious hypoth-
eses about hidden mechanisms that drive emergence, opening new
directions for complexity science. How does it work?

The limitations of deduction and induction
Deductionisaprocess thatstarts with general principles and derives
specific outcomes. Physics exemplifies its power: in principle, given
laws and initial conditions, one could deduce planetary orbits. Yet,
inpractice, the inner solar systemis a complex, chaotic system, and
predicting far-future planetary trajectories remains an unresolved
challenge®. Chaos theory illustrates both its strengths and its weak-
nesses: we can deduce the sensitivity of orbital evolution to initial
conditions, but not the exact, long-term trajectories of individual
planets. Similarly, the Barabasi-Albert network model® deduces
power-law degree distributions from preferential attachment but
cannot predict which nodes become hubs or when cascades occur.
Deduction thus falls short when local nonlinearities drive macroscale
emergence.

Inductioninstead generalizes from observations to broader rules.
Inductive approaches include the use of reservoir computing to pre-
dict chaotic dynamics*and sparse regression for discovering govern-
ing equations’. These approaches learn intricate relationships from
observational data without predefined theoretical frameworks. Yet,
induction cannot go beyond the available data, and it falters when key
microscale data are unobservable — as in the climate system, where
abrupt shifts can be detected but underlying processes remain hid-
den. Induction alone cannot reveal unmeasured mechanisms behind
emergent patterns.

Whatis abductive reasoning?

Abduction, as articulated by Charles Sanders Peirce, generates plausi-
ble hypotheses to explain observed phenomena. Whereas deduction
and induction operate within established premises or observed data,
abduction ventures beyond them to propose candidate mechanisms for
unexpected patterns. Working backwards from macroscale patterns,
it proposes microscale mechanisms that can be tested and refined.
However, insituations involving scientific discovery, the vast hypoth-
esis spacesinvolved and the volume of observational data often make
this approach intractable for human cognition. For example, think-
ing again about climate science, rare abrupt shifts are hidden within
massive observational records, yetinnumerable interacting feedback
mechanisms — such as ocean-atmosphere couplings, or the carbon
cycle — could plausibly account for them.

How can Al power abductive reasoning?

Al may expand the range of problems abductive reasoning can
tackle. Foundation models process information at unprecedented
scales, enabling them to characterize nonlinear relationships
across massive datasets®. Reinforcement learning explores large
hypothesis spaces and uncovers new strategies beyond human
priors, from the Go strategies of AlphaGo to more recent discover-
ies of new matrix multiplication algorithms’. Interpretable Al tools
extract symbolic knowledge from black-box models, revealing
human-understandable insights®. Together, these advances transform
abductioninto acomputationally viable methodology for complexity
science.

We envisionan abductive Al framework that discovers underlying
mechanisms of emergent phenomena, consisting of three synergistic
subsystems (Fig.1). The workflow proceeds iteratively:

« Hypothesis generation. The first Alsubsystem explores hypoth-
esis spaces to generate the microscale hypothesis, thatis,acompu-
tational model. Forexample, deep reinforcement learninglearns
optimal exploration policies for hypothesis spaces, while diffusion
generative models generate hypotheses through progressive
refinement from noise. Unlike human intuition constrained by
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Fig.1|An Al-empowered abductive reasoning framework for discovering
emergence in complex systems. The process yields parsimonious theories
that both predict and explain specific emergent phenomena. Al is used in three
systems, AIS1, AIS2 and AIS3, which correspond to the three systems outlined
inthe main text. RL, reinforcement learning.

knowledge limits, prior experience and computational limitations,
an Al system can exhaustively search vast hypothesis spaces and
discover non-obvious candidates.

« Validation. A second Al subsystem receives each candidate
hypothesis and simulates its macroscale consequences, rapidly
testing whether the proposed microscale mechanism would
generate the observed macroscale phenomena. This process
leverages diverse Al architectures — such as neural operators,
graph neural networks and physics-informed neural networks —
to predict nonlinear dynamics and complexinteractions directly
from data, accelerating validation compared to traditional
first-principles methods.

* Refinement. Thediscrepancy between the predictions of the sec-
ond subsystem and observed macroscale dataserves as feedback,
guiding the first subsystem to refine its hypothesis generation in
subsequent iterations until the model accurately reproduces the
observed macroscale patterns.

« Interpretation. A third Al subsystem translates computational
results into explicit formulas or causal rules, yielding testable
mechanistic understanding of how microscale processes govern
system behaviour. For example, symbolic regression extracts
symbolic formulas, while post-hoc attribution identifies key
mechanistic relationships.

The outcome is parsimonious theories that both predict and
explain emergent phenomena.

Illustrative application

An example demonstrates the promise of abductive Al in addressing
important emergence problems with along history. Insystems such as
ecosystems and power grids, it is essential to be able to identify criti-
cal nodes whose failure triggers collapse’. Our framework trained Al
agents to learn optimal node removal policies with graph neural net-
works and deep reinforcement learning, then used symbolic regression
to derive interpretable formulas quantifying each node’s microscale

contribution to macroscale system resilience'. These expressions
revealed howresilience emerges from local structures and dynamical
properties.

The path forward

For complexity science, abductive Al should not be positioned as an
autonomous discovery engine, but as a scientific co-pilot. Research-
ers define objectives and constraints, while Al explores hypotheses
at computational scale. Human expertise remains central for guiding
searches and validating results.

Challenges remain. Interpretability assumes viable explanations
can be formalized into human-understandable theories about which
scientists can reason qualitatively without exact calculations®— a con-
dition not always met for computationally irreducible systems such as
proteinfolding or neural networks. Insuch cases, predictive accuracy
may still outpace mechanistic insight.

Even so, the integration of Al with abductive reasoning signals a
methodological shift. By combining human creativity with machine
computation, abductive Al offers a powerful framework for decoding
emergence across domains — from network science and systems biol-
ogy to urban systems and Earth system science — and for generating
genuine explanations of emergent phenomena.
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