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Supplementary Notes

1 Quantifying resilience for representative networks
To provide an illustrative example on the ability of our framework to accurately estimate network resilience κ and keystone
nodes Vc, we evaluate it across four representative complex networks. These networks encompass both cellular and neuronal
dynamics and span both synthetic and real network topologies. For each network, starting from its original topology, we
enumerate all possible induced topology by removing varying number of its nodes and assess their resilience, which yields
a diagram of the resilient and non-resilient regions. We adopt topology (average degree) and dynamic (average bi) as the
two dimensions in this diagram, respectively (see Supplementary Figure 1). Consequently, when operating on a network by
removing one node at a step, we jump from one point to another in the topology-dynamic-resilience diagram, and the process
concludes upon reaching a non-resilient point. Moreover, to estimate the resilience κ , we need to discover the shortest path
from the starting resilient point to the non-resilient region, minimizing the number of jumps needed. We utilize the discovered
d · s formula to accomplish the transition from resilience to non-resilience, and compare it with existing physical metrics1–3 and
AI models4, 5. As demonstrated in Supplementary Figure 1, the derived d · s theory indeed consumes fewer number of jumps to
achieve the non-resilient region, discovering the shortest distance to losing the network’s resilience, with a substantial 20%-50%
reduction compared with all existing approaches (see Supplementary Table 1 for full results). Meanwhile, besides the original
complete topology, we also evaluate the performance starting from the residual topologies after a few attacks by the resilience
centrality (RC) approach1. As evident in Supplementary Figure 1, d · s takes distinct routes from RC and requires fewer steps to
reach the termination point, consistently delivering more precise estimations of κ .

In Supplementary Figure 1, the paths resulted from existing approaches–diverging from and much longer than the path
by the d · s formula–indicate that existing theoretical and AI approaches identify the incorrect critical nodes and highlight the
effectiveness of the d · s formula. Indeed, we demonstrate the selected critical nodes in Supplementary Figure 2 of the four
representative networks by different approaches, which display substantial differences. Particularly, both RC and FINDER
remove much more nodes and the remaining network almost disintegrates. For instance, in Supplementary Figure 2a and 2d,
the residual topologies by RC and FINDER only contain fewer than 5 nodes, while our method compromises the two networks’
resilience with their structure maintained, keeping 11 and 12 nodes, respectively.

In Supplementary Figure 2b and 2d, we run different system dynamics (cellular and neuronal) on the same network topology.
Indeed, system dynamics exert a crucial impact on network resilience, leading to distinct keystone nodes Vc for various [F,G],
even within the same topology A. While the keystone nodes Vc identified by current approaches1–5, all within the context of
Q(i;A) focusing on topology while ignoring system dynamics, remain consistent across various [F,G] as long as they operate
atop the same A. As both RC and FINDER ignore the crucial influence of system dynamics [F,G], their corresponding node
importance functions Q lie under the context of Q(A), thus the selected nodes by these approaches are the same, as illustrated
in Supplementary Figure 2b and 2d. On the contrary, our method takes the dynamics [F,G] into consideration, resulting in a
comprehensive node importance function Q(A, [F,G]), which can identify different keystone nodes according to the system
dynamics, with the number of removed nodes much fewer than RC and FINDER. The mis-identification of Vc and wrong
estimation of κ by existing approaches highlight a significant gap: the current theories of network resilience are designed to
treat topological importance only, exposing severe limits to our ability to achieve a comprehensive understanding of network
resilience with complicated network dynamics involved.

2 Full results on real-world large networks
Our model is trained with synthetic networks containing fewer than 100 nodes, while the derived theory holds universal
effectiveness from the experimental environment to practical systems. To prove this, we assess the performance of our model
on real-world networks, particularly large-scale networks, in comparison with current baselines. Specifically, we utilize three
real-world large networks released by ref6, including two gene regulatory networks (Human and Yeast) and one neuronal
network (Brain). The three networks contain 3125, 1647, and 989 nodes, respectively. Besides the original networks, we also
extract sub-graphs from them via community detection, generating multiple test cases with varying sizes, ranging from a dozen
to several hundred nodes. We leverage both Fluid Communities algorithms7 and Louvain Community Detection Algorithm8 to
extract sub-graphs of different sizes by varying the number of clusters and setting different resolutions.

As illustrated in Supplementary Table 2, our approach significantly enhances the precision of quantifying network resilience
κ , achieving an average reduction of over 42.2% compared to the best baseline. The maximum improvement even surpasses
77.8%, revealing the large errors of existing approaches when applied to practical systems. Notably, as the network size
increases, the problem complexity grows exponentially, making it exceedingly challenging to identify critical nodes in large
networks. For the three original complete networks, our method achieves an average improvement of over 49.1% and a
maximum improvement of over 74.4%. The consistent improvements of our approach on real-world networks with varying
sizes validate the scalability of the universally effective d · s metric, implying its promising applicability in real systems.
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3 Full results on synthetic networks
3.1 Synthetic networks
We evaluate our method across a diverse array of synthetic networks, including ER networks, BA networks, RP networks, and
SW networks. All these synthetic networks are generated using networkx9, with their sizes ranging from 80 to 200. For each
case, we generate 10 networks by setting different random seeds. For the RP networks, we adopt two randomly partitioned
communities of equal sizes N

2 , and set the probability of edges within and between communities as 2⟨d⟩
N and ⟨d⟩

5N , respectively.
For the SW networks, we set the probability of rewiring each edge as 0.4. For both ER and BA networks, we set the network
generation parameters according to the predefined average degree (⟨d⟩).

3.2 System dynamics
We investigate cellular dynamics and neuronal dynamics which are characterized by the following coupled equations,

cellular:
dxi

dt
=−bix

f
i +

N

∑
j=1

Ai j
xh

j

1+ xh
j
, (1)

neuronal:
dxi
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=−bixi +

N

∑
j=1

Ai j
1

1+ eµ−δx j
, (2)

For cellular dynamics, we set Hill coefficient h = 2 for the cooperation level and f = 1 for degradation accordingly10. For
neuronal dynamics, we set µ = 3.5 and δ = 2.0 accordingly6. We achieve the dynamical heterogeneity via imposing a
power-law to the self decay rate bi,

f (x,a) = a · xa−1,0 ≤ x ≤ 1 (3)
bi = b+ s · xi, (4)

where b and s are the base value and scaling factor, and a controls the level of heterogeneity. Specifically, a = 1 indicates
the most heterogeneous case where bi is distributed uniformly in [b,b+ s], while setting a to a large value such as 10 implies
dynamical homogeneity where almost all the nodes share the same dynamical parameter bi as b+ s.

3.3 Results on cellular dynamics
Resilience demonstrates universal patterns across various network dynamics and topologies10, and we anticipate that the
derived d · s metric inherits similar universality in different scenarios. As introduced previously, the metric is derived from
synthetic SF networks of 80 nodes (using cellular dynamics), while real-world systems often exhibit diverse topological
connection characteristics, such as the community structures, or the small-world effect11, 12. In the paper, we show the universal
effectiveness of the derived d · s formula across a wide range of networks (ER, BA, RP, and SW networks), comparing with
both theoretical and AI approaches, including resilience centrality1 and FINDER4. Here we provide the full results with more
baselines. Specifically, we include both physical metrics1–3 and AI models4, 5. As illustrated in Supplementary Figure 4, our
approach demonstrates substantial improvements over all existing baselines, achieving an average reduction of over 43.25%
in the estimated network resilience κ . In particular, black-box AI models, including FINDER4 and GDM5, demonstrate no
advantages over traditional physical metrics like RC1 and degree centrality (DC), since both categories of approaches fail to
capture the non-linear and heterogeneous dynamics, a crucial factor influencing the network resilience. The derived d · s metric
takes both topology and dynamics into consideration, and the consistent improvements observed across four distinct types of
network topologies affirm the universal ability of our approach in precisely estimating the resilience κ .

3.4 Results on neuronal dynamics
We then study the universality of d · s by varying the network dynamics. In Supplementary Figure 5 we demonstrate the
estimation performance for neuronal dynamics on ER, BA, RP and SW networks. Though derived from the gene regulatory
dynamics, the ability of our approach to precisely estimate κ is still valid for the distinct neuronal dynamics, and it outperforms
all baselines, with the estimated κ reduced substantially by over 56.2% on average. The experiments across different network
topologies and system dynamics highlight the superior universality across various scenarios of the derived d · s formula.

4 Effectiveness of self-inductive symbolized reinforcement learning
4.1 Search
We utilize 30 scale-free (SF) networks of 80 nodes to train the RL agent. Specifically, we first generate the degree sequence
from a powerlaw (γ = 2.0), then scale the sequence according to a predefined average degree value (⟨d⟩= 6), and finally round
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them up to integers. With the degree sequence, we construct a pseudograph by randomly assigning edges to match the given
degree sequence, which possibly contains parallel edges and self loops. Finally, we remove these parallel edges and self loops,
resulting in the undirected training graphs.

We train the RL agent to attack the generated synthetic networks with the widely adopted Python library Stable Baselines313,
using gene regulatory dynamics. To illustrate the effectiveness of our RL agent, we include three baseline methods for
reference, which are degree centrality (DC), resilience centrality (RC) and FINDER. The average estimated reslience (the
number of attacked nodes) of the three baselines are 10.30, 9.77, 9.80, respectively. In Supplementary Figure 6a, we show
the convergence of the mean estimated resilience of the RL model during the training process. Specifically, the RL agent
successfully outperforms baselines methods after only 25,000 training steps, and continue to improve its estimation performance
as the solution space is more sufficiently explored. Eventually, the RL agent achieves an average estimated resilience of 7.63,
significantly less than the results of baselines, with a remarkable improvements of 21.9%.

4.2 Distill
In order to understand how the RL agent attains the estimation, we analyze the importance of different node features using the
30 training networks for the RL model with GNNExplainer14, calculating the contribution of each node feature to the model
prediction. After obtaining the feature importance scores, we normalize them to the range [0,1] by subtracting the minimum
importance score and dividing over the gap between the maximum and minimum importance score, such that the most and the
least important features have the score of 1 and 0, respectively. As demonstrated in Supplementary Figure 6b, the features
that have significant influence on the model output are degree, neighbor degree, resilience centrality,
neighbor state, state. Since the feature resilience centrality can be calculated by combining degree
and neighbor state, we omit it to reduce redundancy. Therefore, the identified important features are thus degree,
neighbor degree, neighbor state, state. It is worth noting that, though degree-related features are commonly
adopted by existing methods, state-related features are often ignored which contain valuable information about the network
dynamics, playing important roles for network resilience. By employing XAI techniques, we distill the dominant ingredients
that drive the decision process of the intricate RL model.

4.3 Discover
To fully reveal the underlying rules of the RL model, we connect important features to the network resilience with a mathematical
formula using symbolic regression (SR). Using the 30 synthetic networks for training the RL model, we construct an SR
dataset, containing the important node features identified by XAI and labels indicating whether each node is selected by the RL
model. With this dataset, we employ the efficient PySR library15 to explain the actions of the RL model, and finally achieve
tangible equations that describe the contribution of each node to the overall network resilience. Table 3 illustrates the discovered
equations from SR, where we order these formulas from the least complex (highest error) to the most complex (lowest error).
The equations generated by SR may appear complex in their raw form, hence we involve human experts to refine these formulas
to achieve the final formula. Specifically, certain terms are eliminated according to the dimensions. Meanwhile, constant values
are omitted as they do not affect the relative order of different nodes. Finally, as illustrated in Supplementary Figure 6c, striking
a balance between accuracy and simplicity, we obtain a novel formula denoted as d · s, the product of degree and state,
which resides at the core of the black-box RL agent, offering valuable insights into the individual contributions of each node to
the network’s resilience.

5 Improving and reproducing classical physical formulas
Though designed for quantifying network resilience κ and keystone nodes Vc, our proposed framework is not limited to this
specific task. Instead, the self-inductive symbolized reinforcement learning framework serves as a versatile tool for knowledge
discovery in complex networks. With proper definition and adaption, our framework can solve problems that are analogous to
equations (2-5).

5.1 Improving over resilience centrality
We investigate network resilience in dynamical homogeneous scenarios, featuring Fi = F,∀i and Gi j = G,∀i j. With dynamical
homogeneity, the resilience function R can be reduced to a 1-D equation10, which leads to a theoretical solution of Q
as resilience centrality1. To demonstrate the universal ability of our framework in scientific discovery, we run the self-
inductive symbolized RL framework in dynamical homogeneous scenarios. We include six node features, namely degree,
maximum edge weight, neighbor degree, and dynamics parameters 1/2/3. In Supplementary Figure 7a
we illustrate the normalized node importance scores of the policy network, where the two dominant features are degree
and neighbor degree. We utilize these two features as primitives for SR in the discover process to predict the identified
keystone nodes Vc by the RL agent, leading to the candidate formulas in Supplementary Table 4. In the last three regressed
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formulas, one critical term emerges, in the form of 2d̄ +d · (d̄ −C), improving over the resilience centrality index by one term
denoted as 2d̄ +d · (d −C), which is originally obtained through heavy theoretical derivations and analysis.

5.2 Reproducing universal resilience function
Besides studying the policy network, we also delve into the value network which measures the resilience conditions of the
current network. Indeed, in dynamical homogeneous scenarios, the resilience function R can be expressed as a concise empirical
expression called the β equation10. We are able to faithfully re-discover this formula using the self-inductive symbolized RL
framework. Specifically, we distill the value network of the RL agent, and in Supplementary Figure 7b we illustrate the feature
importance scores. Again, the two features degree and neighbor degree contribute significantly to the prediction of the
value network. We then employ the similar SR process to decipher the value network despite we replace the target of SR from
keystone nodes Vc to the output of the value network. Surprisingly, our self-inductive framework successfully reproduces the β

equation, as demonstrated in Supplementary Table 5 where two candidate equations exhibit the critical term, ⟨d2⟩
⟨d⟩ , which is just

the same as the expression of β in its original proposal10.

Both resilience centrality and β were achieved manually by exhaustive theoretical efforts, while they are now successfully
reproduced or even improved in a computational rather than theoretical way. More importantly, in complicated problems such
as the quantification of network resilience κ and keystone nodes Vc with non-linear and heterogeneous dynamics involved in
this work, theoretical treatments may become inapplicable due to the non-analytic nature of the problem, thus an AI framework
being able to produce tangible and human-understandable formulas can greatly benefit and accelerate scientific discovery.
Further efforts can made to extend the self-inductive framework to discover novel mechanisms besides network resilience, and
we believe that the proposed framework may serve as a model for future AI-enabled scientific discovery.

6 Advantages of mathematical formulas over black-box AI models
A black-box AI model alone may provide accurate predictions, albeit it has limited explainability compared to a tangible
formula, posing a challenge in comprehending the internal mechanisms behind its predictions. More importantly, beyond the
aspect of explainability, a physical insightful formula exhibits greater robustness across different scenarios, underscoring its
ability to extrapolate insights to previously unseen data. Specifically, the powerful expressive capabilities of neural networks
enable AI models to fit intricate functions within the dataset, including the inherent noise. Such noise often signifies unstable
relationships, constraining the generalization ability of AI models and impeding their predictive performance on unfamiliar
data. In our experiments, we train the RL model utilizing 30 SF networks. It is likely that the RL model captures patterns
specific to these 30 cases, which may not be truly representative of general scenarios, leading to failures in estimating resilience
of dissimilar networks.

In order to assess the generalization ability, we evaluate the performance of resilience estimation on training networks
present in the training dataset and test networks that are not seen during the training process. We compare the black-box
RL model obtained after the search process and the derived d · s formula following the complete self-inductive framework.
We demonstrate in Supplementary Figure 8a the performance of RL and d · s on training and test networks, with the relative
difference between the estimated network resilience κ by the two approaches. As expected, with strong ability in fitting training
data, the RL model achieves slightly better performance than the d · s metric on training networks. However, in the crucial task
of generalizing to unseen test networks, d · s demonstrates substantial advantages in estimation precision. In particular, as the
network size increases, the gap between d · s and the RL model becomes larger, with the most significant improvement of κ

by 10 nodes. The results verify the superior generalization ability of the d · s metric in contrast to the RL model. Moreover,
the discrepancy between RL and d · s affirms the necessity of obtaining an explainable and tangible formula, which is not
accomplished by existing AI for science approaches that often culminate in black-box models. On the contrary, our proposed
self-inductive framework, distinct from prior approaches, delves deeper into the success of AI models, unraveling the underlying
rules governing the RL model’s decision-making process.

Besides generalizing towards unseen data and delivering valuable insights, a mathematical formula also displays super-fast
inference speed in comparison to the complex computations of multi-layer neural networks in the RL model. In Supplementary
Figure 8b we illustrate the average inference time over 10 networks of the RL model Θ and the mathematical formula θ , across
varying network sizes. As expected, the mathematical formula exhibits substantially shorter inference time than the RL model,
with an average inference time reduction of over 34.5%. Notably, for larger networks with 160-200 nodes, the time reduction is
even more significant, exceeding 50.1%.
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7 Network protection
Network resilience can be effectively enhanced by safeguarding keystone nodes identified by the derived d · s formula. Here we
provide examples of this strategic network protection in Supplementary Figure 9 and 10 for cellular and neuronal networks,
respectively. For cellular networks, safeguarding 3 nodes with the largest d · s values boosts the network resilience κ for
over 2.24 times in average. Similarly for neuronal networks, safeguarding the top 3 nodes according to the d · s formula can
increase network resilience κ by about 2.23 times. Surprisingly in Supplementary Figure 9b-c, Supplementary Figure 10a and
Supplementary Figure 10c, we observe that the safeguarded nodes eventually detach from the network such that the network
loses its resilience. As these protected nodes can not be directly removed, their disconnections actually result from the removal
of all their neighbors. In other words, these keystone nodes with high d · s play dominant roles in maintaining the system
resilience, thus they must be removed to compromise a network’s resilience, either by directly removing them or by removing
their neighbors to get rid of these nodes to block their influence. The latter one usually takes much more efforts due to the
inter-connectivity of the network structure (these keystone nodes tend to connect multiple nodes), thus safeguarding nodes
according to d · s serves as an efficient strategy for enhancing network resilience.
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Supplementary Tables

Supplementary Table. 1. Full results of the estimated resilience κ on 4 typical networks. F means failing to
compromise the network’s resilience.

Dynamics Network DC RC GND EI GDM FINDER Ours impr%

Cellular Real 6 6 F F 6 5 4 20.0%
Synthetic 7 5 6 9 11 5 4 20.0%

Neuronal Real 6 6 13 10 9 9 3 50.0%
Synthetic 7 7 5 9 6 6 3 40.0%

Supplementary Table. 2. Full results of the estimated network resilience κ on real-world large-scale networks. S
means sub-graphs extracted via community detection, and G means the original complete graph.

Dynamic Network ID N DC RC GND EI GDM FINDER Ours impr%

Cellular

Human

S-1 298 7 7 134 154 9 8 6 14.3%
S-2 353 23 20 213 174 74 24 16 20.0%
S-3 355 9 9 174 117 34 9 4 55.6%
S-4 358 6 6 128 61 45 6 5 16.7%
S-5 441 16 16 275 176 68 16 14 12.5%
S-6 529 32 33 242 269 93 33 12 62.5%
S-7 549 22 23 259 315 82 22 11 50.0%
S-8 587 31 32 355 293 67 32 15 51.6%
S-9 683 25 25 392 334 142 25 19 24.0%

S-10 932 54 53 489 417 78 48 19 60.4%
S-11 978 64 64 557 470 195 67 32 50.0%
S-12 1136 78 75 755 644 240 83 36 52.0%

G 3125 272 256 2026 1924 507 263 125 51.2%

Yeast

S-1 296 3 4 52 61 4 4 2 33.3%
S-2 340 10 10 99 126 29 9 2 77.8%
S-3 491 17 16 213 192 24 17 11 31.3%
S-4 507 25 16 247 178 39 23 4 75.0%
S-5 701 30 38 281 294 51 31 8 73.3%
S-6 773 34 29 247 321 58 34 14 51.7%
S-7 931 50 43 403 433 80 52 16 62.8%
G 1647 121 118 808 726 193 117 30 74.4%

Neuronal Brain

S-1 286 103 105 180 258 203 205 84 18.4%
S-2 313 119 119 215 206 212 226 96 19.3%
S-3 359 158 155 236 267 251 210 122 21.3%
S-4 676 278 271 351 541 490 446 222 18.1%
G 989 428 430 490 889 745 543 335 21.7%
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Supplementary Table. 3. Output equations of SR, ordered by complexity from low to high (or by loss from high to
low). Equations are refined and simplified manually according to dimensions, and constant terms are discarded as they
do not affect the relative order of different nodes.

Loss Regressed equation Expanded equation Simplified metric

0.2114 −434.27 −434.27 1
0.1388 (−5.76+d) d −5.76 d
0.1177 (−20.37+(d · s)) d · s−20.37 d · s
0.1159 (−27.40+((s ·d)+d)) d · s+d −27.40 d · s
0.1103 (−9.81+((−0.39 · d̄)+(s ·d))) d · s−0.39d̄ −9.81 d · s
0.1100 (−9.81+((−0.38 · d̄)+(s · (−0.12+d)))) d · s−0.12s−0.38d̄ −9.81 d · s
0.1093 ((−9.81+((−0.66+(−0.38 · d̄))+(s ·d))) · d̄) d · s · d̄ −0.38d̄2 −10.47d̄ d · s · d̄
0.1090 (((−9.81+((−0.66+(−0.38 · d̄))+(s ·d))) · d̄)+1.11) d · s · d̄ −0.38d̄2 −10.47d̄ +1.11 d · s · d̄
0.1087 ((((s ·d)+(−1.42+ d̄))+(−1.26 · (d̄ +(s+d))) · d̄) d · s · d̄ −0.26d̄2 −1.26d̄ · s−1.26d · d̄ −1.42d̄ d · s · d̄
0.1086 (((((s ·d)+(−1.42+ d̄))+(−1.26 · (d̄ +(s+d))) · d̄) · d̄) d · s · d̄2 −0.26d̄3 −1.26d̄2 · s−1.26d · d̄2 −1.42d̄2 d · s · d̄2

Supplementary Table. 4. Output equations of SR on the policy network that is trained under dynamical homogeneous
conditions, ordered by complexity from low to high (or by loss from high to low). Equations are refined and simplified
manually according to dimensions, and constant terms are discarded as they do not affect the relative order of different
nodes. Critical terms of the equations are extracted to improve over resilience centrality of the form 2d̄ +d · (d −C)
where C is a constant value.

Loss Regressed equation Critical term

0.2184 136.8 1
0.1980 (d̄ · d̄) d̄2

0.1096 ((−2.0758+ d̄) ·53.743) d̄
0.1084 (((−1.9913+ d̄) ·92.329) ·d) d · d̄
0.0904 ((d̄ +((−4.2525+ d̄) ·d)) ·136.8) d · d̄
0.0868 (((d̄ +((−4.2525+ d̄) ·d)) ·133.13) ·3.4307) d · d̄
0.0863 (((1.8274+((−4.2525+(d̄ +0.41679)) ·d)) · d̄) ·133.13) d · d̄2

0.0862 ((((d̄ +((−4.2525+(−0.79803+ d̄)) ·d))+ d̄) ·133.13) ·d) 2d̄ +d · (d̄ −C)
0.0862 (1.4475+((((d̄ +((−4.2525+(−0.79803+ d̄)) ·d))+ d̄) ·133.13) ·d)) 2d̄ +d · (d̄ −C)
0.0861 (((((((d̄ +((−6.7034+(−0.7394+ d̄))) ·d))+ d̄) ·92.372)+168.51) ·d)+43.23) 2d̄ +d · (d̄ −C)

Supplementary Table. 5. Output equations of SR on the value network that is trained under dynamical homogeneous
conditions, ordered by complexity from low to high (or by loss from high to low). Equations are refined and simplified
manually according to dimensions, and constant terms are discarded as they do not affect the relative order of different
nodes. Critical terms of the equations are extracted to reproduce β equation of the form ⟨d2⟩

⟨d⟩ .

Loss Regressed equation Critical term

1.0500 ⟨d⟩ ⟨d⟩
0.0577 (⟨d2⟩ ·0.14479) ⟨d2⟩
0.0573 (−0.032747+(0.14654 · ⟨d2⟩)) ⟨d2⟩
0.0355 ((−1.6515+ ⟨d⟩)+(0.081034 · ⟨d2⟩)) ⟨d⟩
0.0120 ((−2.1623+ ⟨d⟩)+(0.33149 · ( ⟨d

2⟩
⟨d⟩ )))

⟨d2⟩
⟨d⟩

0.0120 ((−2.1827+ ⟨d⟩)+(0.33151 · (( ⟨d
2⟩

⟨d⟩ )+0.061213))) ⟨d2⟩
⟨d⟩

0.0065 ((−0.60722+(⟨d2⟩ · (−0.0029165 · ⟨d2⟩)))+(0.12484 · (⟨d2⟩+ ⟨d2⟩))) ⟨d2⟩
0.0048 ((−0.75985+(⟨d2⟩ · (−0.0024985 · ⟨d2⟩)))+(0.22046 · ((−0.55267+ ⟨d⟩)+ ⟨d2⟩))) ⟨d2⟩
0.0048 ((−0.73231+((−0.98001+ ⟨d2⟩) · (−0.0025045 · (−0.36081+ ⟨d2⟩))))+(0.2175 · (−0.66627+(⟨d2⟩+ ⟨d⟩)))) ⟨d2⟩
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Supplementary Figures

RC FINDER OursRC FINDER Ours

RC FINDER OursRC FINDER Oursa

dc

b

Cellular
d𝑥!
d𝑡 = −𝑏!𝑥!

" +(
#$%

&

𝐴!#
𝑥#'

1 + 𝑥#'

Neuronal
d𝑥!
d𝑡 = −𝑏!𝑥! +(

#$%

&

𝐴!#
1

1 + 𝑒()*+!

Supplementary Figure 1. Visualization of the node removal process by different methods. The green circle represents the
original topology from which all methods start to remove one single node at a step, indicated by different symbols. The x-axis
means the average degree and the y-axis means the average bi value. The color of each cell represents the ratio of resilient
networks. The experiments are conducted on the following four typical networks: a. a real cellular network. b. a synthetic
cellular network. c. a real neuronal network. d. a synthetic neuronal network.
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Supplementary Figure 2. Visualization of the selected nodes Vc and the remaining topology A[V \Vc] by different
approaches. Large red nodes are the selected nodes for removal, and small red nodes are the omitted nodes that are not in the
greatest connected component (GCC) after node removal. Black nodes and edges are the remaining topologies. The
experiments are conducted on the following four typical networks: a. a real cellular network. b. a synthetic cellular network. c.
a real neuronal network. d. a synthetic neuronal network.
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Supplementary Figure 3. Visualization of the selected nodes Vc and the remaining topology A[V \Vc] by different
approaches. Large red nodes are the selected nodes for removal, and small red nodes are the omitted nodes that are not in the
greatest connected component (GCC) after node removal. Black nodes and edges are the remaining topologies. The
experiments are conducted across two complex networks: a. a real cellular network. b. a real neuronal network.
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Supplementary Figure 4. The average quantified network resilience across 10 cellular networks of different methods for a.
ER networks b. BA networks c. RP networks and d. SW networks of growing network sizes. Lower values represent more
precise quantification of network resilience.
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Supplementary Figure 5. The average quantified network resilience across 10 neuronal networks of different methods for a.
ER networks b. BA networks c. RP networks and d. SW networks of growing network sizes. Lower values represent more
precise quantification of network resilience.
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Supplementary Figure 6. a. Convergence of the mean estimated resilience by the RL model over 30 training networks
(lower means more accurate estimation). The results of three baselines, including degree centrality (DC), resilience centrality
(RC) and FINDER, are provided. b. Importance value calculated of each node feature by XAI indicating its corresponding
contribution to the model prediction. The feature importance values are normalized to [0,1]. c. Prediction loss and formula
complexity of the obtained equations by SR. The final d · s metric is selected by trading off the two aspects.
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Supplementary Figure 7. a. Importance value calculated of each node feature by XAI indicating its corresponding
contribution to the prediction of policy network. The feature importance values are normalized to [0,1]. b. Importance value
calculated of each node feature by XAI indicating its corresponding contribution to the prediction of value network. The
feature importance values are normalized to [0,1].
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Supplementary Figure 8. a. The relative error of the estimated network resilience κ between the d · s formula and the RL
model. Experiments are conducted on both the 30 training networks of 80 nodes and 210 unseen test networks ranging from 80
nodes to 200 nodes. Blue and red dots represent that the RL model or the d · s achieves a more precise (lower) quantification of
κ , respectively. Green dots indicate a tie. b. The average inference time of the RL model Θ and the d · s formula θ across 10
networks of different sizes.
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Supplementary Figure 9. The network resilience κ under cellular dynamics when protecting the top Np nodes indicated by
the d · s formula for three synthetic networks of 100 nodes. Nodes with green shells are the safeguarded nodes. Large red nodes
are the removed nodes according to Q= d · s and small red nodes are the discarded nodes that are not in the greatest connected
component (GCC) after node removal.

16/20



a
𝑁! = 0 𝑁! = 1 𝑁! = 2 𝑁! = 3

𝜅 = 20 𝜅 = 35 𝜅 = 36 𝜅 = 37

b
𝑁! = 0 𝑁! = 1 𝑁! = 2 𝑁! = 3

𝜅 = 19 𝜅 = 26 𝜅 = 34 𝜅 = 45

c
𝑁! = 0 𝑁! = 1 𝑁! = 2 𝑁! = 3

𝜅 = 17 𝜅 = 25 𝜅 = 36 𝜅 = 42

Neuronal
d𝑥"
d𝑡 = −𝑏"𝑥" +3

#$%

&

𝐴"#
1

1 + 𝑒'()*!

Supplementary Figure 10. The network resilience κ under neuronal dynamics when protecting the top Np nodes indicated
by the d · s formula for three synthetic networks of 100 nodes. Nodes with green shells are the safeguarded nodes. Large red
nodes are the removed nodes according to Q= d · s and small red nodes are the discarded nodes that are not in the greatest
connected component (GCC) after node removal.

17/20



0 20 40 60 80 100

1

2

3

4

5

6

Time

N
od

e 
st

at
e

resilient

0 20 40 60 80 100

0

0.5

1

1.5

2

Time

N
od

e 
st

at
e

non-resilientremove critical nodes 𝑉!

Cellular
d𝑥"
d𝑡 = −𝑏"𝑥"

# +)
$%&

'

𝐴"$
𝑥$(

1 + 𝑥$(

Supplementary Figure 11. The node state trajectory of a gene regulatory network before and after losing its resilience
under node removal, calculated according to the cellular dynamics. The node states are defined as the expression activity of
genes, where a resilient network render active node states while a non-resilient network evolves to cell death (inactive genes).
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Supplementary Figure 12. The node state trajectory of a brain network before and after losing its resilience under node
removal, calculated according to the neuronal dynamics. The node states are defined as the activity of neurons, where a resilient
network render the same desired high steady state of different initial conditions, while a non-resilient network evolves to
bifurcation of different initial conditions or system inactivity.
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Supplementary Figure 13. a. The proposed self-inductive AI for complex network framework first solves the complicated
problem with AI, then unravels the underlying rules of how AI solves the problem, eventually leading to human-understandable
formulas. First, define the problem as a computational manner. Second, search critical nodes of network resilience with an AI
model. Third, distill the AI model to identify important node features. Fourth, discover the underlying rules of the AI model
that are easy to understand by human. Last, refine the results generated by AI to achieve the final formulaic theory. b. An
reinforcement learning (RL) model is designed to search critical nodes for network resilience, with one node removed at a step
until the network loses its resilience. A graph neural network based model is developed to encode rich node features to
representations, which inform node selection. The RL agent interacts with an environment that computes the states of the
system, evaluates the resilience of the network, and provides feedback to the agent. c. The model prediction is attributed to
individual input features, where the contribution of different features are analyzed and a set of important features Ω which
dominates the prediction of the RL model are identified. d. Empirical expressions between important features by XAI and
critical nodes by RL are established. A tangible mathematical formula θ is discovered with symbolic regression indicating the
contribution of different nodes to the overall network resilience, which deciphers the intricate mechanisms of the RL model and
is more human-understandable.
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