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Abstract

Probing large language models (LLMs) has yielded valuable insights into their
internal mechanisms by linking neural representations to interpretable semantics.
However, how neurons functionally co-activate with each other to give rise to emer-
gent capabilities remains largely unknown, hindering a deeper understanding and
safer development of LLMs. In this work, we introduce graph probing, a method
for uncovering the functional connectivity topology of LLM neurons and relating it
to language generation performance. By analyzing internal neural graphs across di-
verse LLM families and scales, we discover a universal predictability of next-token
prediction performance using only neural topology. This predictability is robust
even when retaining just 1% of neuron connections or probing models after only 8
pretraining steps, highlighting the sparsity and early emergence of topological pat-
terns. Further graph matching analysis suggests that, despite significant distinctions
in architectures, parameters, and training data, different LLMs develop intricate
and consistent neural topological structures that may form the foundation for their
language generation abilities. Codes and data for the graph probing toolbox are
released at https://github.com/DavyMorgan/llm-graph-probing.

1 Introduction

Large language models (LLMs) exhibit remarkable generative capabilities [53, 50, 19, 47, 22], yet
our understanding of how they succeed and what they have learned remains limited [45]. Probing,
which extract interpretable features from neural activations [1], has emerged as a powerful approach
for reverse-engineering LLMs [5, 24]. For instance, Gurnee et al.[24] showed that LLMs encode a
compact world model of space and time using linear regression probes. Unsupervised probing, such
as sparse auto-encoders [13, 18, 41, 33, 39], have further revealed dictionaries of interpretable, mono-
semantic concepts [25] and even causal circuits [36], corresponding to directions in neural latent space.
While these advances shed light on the semantics of individual neurons and representations [45],
much less is known about how neurons are functionally connected, i.e. the neural topology, which is
believed to play an essential role in the emergence of intelligence [42, 3].

Recent studies have drawn compelling parallels between neurons in LLMs and those in the human
brain [49, 44, 11, 31, 42, 38, 51, 8, 46, 34], revealing shared properties such as spatial-functional
organization [31, 42] and left lateralization [8]. Neural activations at internal layers of LLMs have
also been shown to reliably predict human brain responses given the same linguistic stimuli [44,
51, 35]. However, these efforts primarily focus on static neural representations of LLMs, while
overlooking the key aspect of temporal and functional neural topology that has been studied in
neuroscience for decades [4, 3, 15]. Moreover, although analogies between LLMs and human brains
are insightful [49, 21], few works explicitly connect these findings to LLMs’ language generation
performance, which is one of the primary indicators of an LLM’s intelligence.

In this work, we introduce graph probing, a novel approach for investigating the functional connec-
tivity of neurons in LLMs and its relationship to language generation performance. By analyzing
neural activity time series as LLMs process text token by token, we compute temporal and functional
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Figure 1: An overview of our graph probing method. We extract the time series of neuron activities
for each attention layer in an LLM as it processes text token by token. We then compute temporal
and functional correlations between neural activations to obtain topological connectivity graphs of
neurons. GNN-based probes are trained to predict the perplexity of the auto-regressive prediction for
the input token sequence.
correlations between neurons to construct dynamic neural graphs. Using this large-scale dataset of
text-induced neural topology, we train graph neural network (GNN) [29, 14] as probes to predict
LLMs’ accuracy in auto-regressively generating the corresponding text. In essence, graph probing
connects the micro-level topology of how neurons are connected given a token sequence, to the
macro-level performance of how well LLMs predict these tokens, offering a new lens to study the
emergent capabilities of LLMs. Our method is summarized in Figure 1 and described in Section 2.

We then apply our graph probing framework to comprehensively analyze the neural topology of LLMs
through extensive experiments. First, we demonstrate that auto-regressive language generation per-
formance can be reliably predicted using only the neural connectivity graph. This predictability holds
universally across LLM families and scales, with empirical results spanning GPT [40], Pythia [7],
and Qwen [54], ranging from millions to billions of parameters (Section 3.1). Next, we show that
these neural topologies are (1) sparse, given strong predictive performance when preserving only 1%
of neuron connections (Section 3.2), (2) non-linearly related to language generation performance, as
non-linear graph probing significantly outperforms linear baselines (Section 3.3), and (3) early emerg-
ing with predictive topological structures arising within just 8 steps of LLM pretraining (Section 3.4).
Finally, we use our probes to perform cross-model contrastive graph matching, revealing that distinct
LLMs converge toward similar internal neural topologies, suggesting shared underlying principles
despite large discrepancies in architectures, parameters, and training data (Section 4). While not
without limitations, we expect graph probing to provide valuable insights into the inner workings of
LLMs and to guide their future development in an interpretable and safe manner.

2 Graph Probing

Neural Topology. To construct neural graphs from LLMs, we draw inspiration from neuroscience
where functional brain networks are derived from temporal correlations in fMRI or EEG activation
signals [3, 52, 10], as shown in Figure 1. Formally, given an LLM composed of stacked attention
layers, the neural topology is constructed as follows:

Neural Activity: H = HIDDEN_STATE(LLM(X)) = [h0,h1, . . . ,ht] ∈ Rn×t, (1)

Neural Topology: A =
(
aij

)
∈ Rn×n, (2)

aij = ρ(Hi,:,Hj,:) =

∑t
k=0 (Hi,k −Hi,:)(Hj,k −Hj,:)√∑t

k=0 (Hi,k −Hi,:)2
√∑t

k=0 (Hj,k −Hj,:)2
, (3)

where neurons at each layer produce a time series of hidden states H as the model processes a token
sequence X = [x0, x1, . . . , xt], and the temporal co-activation patterns among neurons define their
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Figure 2: Analysis of topological properties and their relationship to language generation performance.
(a) Degree distributions of neural connectivity graphs induced by 10 different text inputs, with
perplexity indicated by color darkness. (b) 2D histogram showing the relationship between token
prediction perplexity and network density across a text dataset. (c) Perplexity increase resulting from
interventions on neurons with high- vs. low-degree. Specifically, we disable the top/bottom k% of
neurons by setting their activations to zero during inference.

functional connectivity. We capture this through a complete n× n weighted connectivity matrix A,
where each node corresponds to a neuron and each edge weight aij represents the Pearson correlation
coefficient between the activation time series of two neurons [3, 15]. Meanwhile, the LLM is trained
for auto-regressive next-token prediction, with performance commonly measured by perplexity [6]
which corresponds to the exponentiated average negative log-likelihood over the token sequence:

Perplexity: PPL(X) = exp

{
−1

t

t∑
i=1

log pθ(xi | x<i)

}
. (4)

The graph is dynamically induced by the specific token sequence, and our goal is to investigate
whether the text-responsive neural topology is linked to how well the model predicts the text.

A trivial approach to characterizing graphs is to compute heuristic topological properties commonly
used in network analysis [2], such as degree distribution1 and network density2. However, these basic
properties tend to exhibit no clear or intuitive relationship with the model’s performance–samples
with drastically different perplexities can display similar degree distributions or network densities,
as shown in Figure 2(a-b) obtained by feeding a text dataset (details in Section 3) into the GPT-2
model [40]. Nevertheless, when we intervene on neurons with high degree by forcing their activations
to zero during inference, we observe a substantial increase in perplexity (up to 263×), compared to
interventions on low-degree neurons (Figure 2(c)). This suggests that while neural topology indeed
plays a crucial role in determining next-token prediction performance, the relationship is highly
non-trivial and cannot be adequately explained by simple, handcrafted topological metrics.

Probing with GNN. To better characterize the complex interplay between neural topology and
perplexity, we propose graph probing, a method that learns representations of neural connectivity
graphs to predict corresponding language generation performance, as illustrated in Figure 1. Specifi-
cally, we adopt a GNN-based probe that encodes each node by aggregating neighborhood information
through convolutional message passing on the graph [29, 14]. We employ the ReLU activation
function [16] between graph convolution layers and use both average and maximum pooling to
summarize node-level embeddings into a graph-level representation. Given a connectivity matrix
A induced by feeding a tokenized sequence X to an LLM, where each element aij denotes the
functional connectivity (Pearson correlation coefficient) between neurons i and j, our probe produces
the graph representation z as follows:

ΦL = ReLU(AΦL−1ΘL), . . . ,Φ0 ∈ Rn×d, (5)

z = AVG_POOLING{ΦL
1,:, . . . ,Φ

L
n,:} ∥ MAX_POOLING{ΦL

1,:, . . . ,Φ
L
n,:}, (6)

where Φ0 ∈ Rn×d denotes the initial learnable node embeddings, Θl ∈ Rd×d is the weight matrix
of the l-th layer in the GNN with L total layers, and d is a hidden dimensionality hyperparameter. We

1The degree of a node is the sum of its connectivity strengths: di =
∑

j ∥aij∥, where we take the absolute
value since correlations can be either positive or negative within the range [−1, 1].

2Network density is defined as the total connectivity strength:
∑

i,j ∥ai,j∥, again using the absolute value of
Pearson correlation coefficients.
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then feed the graph representation z ∈ R2d into a multi-layer perceptron (MLP) [43] to predict the
perplexity associated with the input tokenized sequence X:

p̂ = W2 · ReLU(W1 · zT ), (7)

where p̂ is the predicted perplexity, and W1 ∈ R2d×d,W2 ∈ Rd×1 are learnable weights of the
MLP. Our graph probe is trained to minimize the mean squared error (MSE) between predicted and
true perplexities over a dataset of tokenized sequences X = {X1, . . . , XN}:

L(X) =
1

N

N∑
i=1

(p̂i − PPL(Xi))
2
. (8)

For details of graph probing including hyper-parameter and computer resources, see Appendix A.

3 Results

With graph probing, we aim to understand whether the auto-regressive token-prediction performance
of LLMs is associated with their probed internal neural topologies. If such a relationship exists,
does it generalize across different model families and scales? Furthermore, how and when is the
dependence between these two seemingly distant aspects established?

LLMs. In our experiments, we train graph probes on neural topology derived from three families
of LLMs, each spanning across different sizes. Specifically, we evaluate GPT2 [40] (GPT2, GPT2-
medium, GPT2-large), Pythia [7] (160M, 410M, 1.4B, 2.8B, 6.9B, 12B), and Qwen2.5 [54] (0.5B,
3B, 7B, 14B). Details of the experimented LLMs are provided in Appendix B.

Datasets. To enable our study, we construct neural connectivity graphs using the text corpora on
which LLMs were pretrained. Specifically, we use the Pile dataset [17] for Pythia models, and the
OpenWebText dataset [20] for GPT2 and Qwen2.5 models. To ensure consistent temporal resolution,
we control the length of neural activity time series to fall between 256 and 1024 tokens by merging
consecutive sentences as needed. For each token sequence, we perform LLM inference to compute
its perplexity and simultaneously extract hidden state time series to generate the corresponding neural
topology. For each model, we construct a probing dataset comprising about 10,000 graph–perplexity
pairs. Further details on dataset construction are provided in Appendix C.

Evaluation. We split the dataset into training and test sets using an 8:2 ratio. Having learned graph
probes on the training set, we evaluate their out-of-sample graph regression performance on the
test set, which reveals the extent to which micro-level neural topology is predictive of macro-level
language generation ability. To quantify the effectiveness of graph probing, we report standard
regression metrics on our test data, including mean squared error (MSE), mean absolute error (MAE),
coefficient of determination (R2), Pearson correlation (ρp), and Spearman rank correlation (ρs).

3.1 Predictability

We show our graph probing results in Figure 3, which exhibit consistently strong predictability across
all three LLM families. Particularly, graph probing achieves 0.95 in ρp and ρs, and 0.90 in R2 on
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Figure 3: Out-of-sample performance of graph probing on the test set for (a) GPT-2 (b) Pythia-160M
(c) Qwen2.5-0.5B. The correlation between the perplexity predicted by graph probing and the ground-
truth perplexity reflects how well LLM performance can be inferred from neural topology.
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Figure 4: (a) Out-of-sample performance of graph probing on LLMs of different sizes including
GPT2, GPT2-medium, GPT2-large, Pythia-160M, Pythia-410M, and Pythia-1.4B. (b-c) Out-of-
sample performance of graph probing on each of the 12 layers in (b) GPT-2 and (c) Pythia-160M.

both Pythia-160M and Qwen2.5-0.5B. For GPT-2, graph probing reliably predicts perplexity with ρp
and ρs exceeding 0.92 and an R2 score of 0.85. The high predictability is observed across LLMs
of varying scales. As shown in Figure 4(a), models ranging from 124M to 1.4B parameters in the
GPT-2 and Pythia families consistently achieve strong topology-perplexity correlations, with ρp and
ρs ranging from 0.89 to 0.96.

We further train probes on neural connectivity graphs derived from different layers of GPT-2 and
Pythia-160M. Figures 4(b–c) show that neural topology at every layer is predictive of language
generation performance, with the strongest predictability (ρp and ρs exceeding 0.91 and 0.93) found
in the middle layers of both models. This observation is also aligned with previous probing studies
that identify the middle layers of LLMs as particularly informative and semantically rich [24, 51].
The above graph probing experiments reveal that neural topology is a universal and strong predictor
of LLMs’ language generation capabilities.

3.2 Sparsity

The universal predictability observed so far is based on complete graphs, which are dense n × n
connectivity matrices that capture pairwise functional correlations between all neurons. Yet not
all connections contribute equally to language generation performance, as suggested by our earlier
intervention analysis comparing high- and low-degree nodes (Figure 2(c)). To explore this further,
we examine the distribution of edge weights in Figure 5(a), which reveals that the majority of
connections are weak, with absolute correlation values near zero. This motivates us to investigate
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Figure 5: (a) Edge weight (absolute value) distribution for 10 neural graphs of GPT-2. (b) Neural
topology under different levels of sparsity, where weak connections are pruned by thresholding on the
absolute value of edge weight. (c-e) Out-of-sample graph probing performance on neural connectivity
graphs of different sparsity levels for (c) GPT-2 (d) Pythia-160M and (e) Qwen2.5-0.5B.
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whether perplexity can still be predicted from sparse graphs with weakly correlated edges pruned
out by thresholding, which is commonly employed in human brain network construction [3], as
illustrated in Figure 5(b). To evaluate this, we train graph probes on neural topology with varying
levels of sparsification (Figures 5(c-e)). Surprisingly, the predictive performance remains remarkably
stable even after removing up to 90% of the edges, with minimal degradation. Notably, even under
extreme sparsity where only 1% of the original edges are retained, the neural topology still enables
effective prediction of perplexity, achieving above 0.71 correlations in ρp and ρs.

Table 1: Out-of-sample graph probing performance
on sparse neural topologies derived from LLMs
containing 2.8B to 14B parameters.

LLM (Sparsity) R2 ρp ρs

Pythia-2.8B (90%) 0.8995 0.9484 0.9592
Pythia-6.9B (90%) 0.9210 0.9599 0.9670
Pythia-12B (99%) 0.8974 0.9480 0.9527
Qwen2.5-3B (90%) 0.7051 0.8426 0.8372
Qwen2.5-7B (90%) 0.7699 0.8789 0.8823
Qwen2.5-14B (95%) 0.8249 0.9086 0.9167

Graph probing on complete neural topology be-
comes computationally prohibitive as the LLM
size increases, due to the quadratic number of
edges that directly impacts the computational
cost in both time and memory. For instance,
while complete graph probing is feasible for
Pythia-160M with 768 neurons and 0.6M edges
per layer, the number of edges in Pythia-12B–
comprising 5,120 neurons per layer–explodes
to over 26M per graph. Fortunately, the above
experiments suggest that most of the predictive
signal resides in a small subset of strong connec-
tions, making it possible to significantly reduce the number of edges while preserving nearly all
critical topological information. Leveraging this insight, we scale up graph probing to much larger
models by operating on sparsified neural topology. While our earlier results focused on models
with fewer than 1.4B parameters, we now train probes on sparse graphs derived from LLMs with
up to 14B parameters. As shown in Table 1, graph probing continues to exhibit strong regression
performance across all six models, achieving a maximum accuracy of over 0.92 R2 and over 0.96 ρs,
providing compelling evidence that the relationship between neural topology and language modeling
performance is universal across model sizes. Complete results of the predicted and groundtruth
perplexities for all models are provided in Appendix D.

3.3 Non-linearity

We next examine the complexity of the relationship between neural topology and language generation
performance. Specifically, we train graph probes with varying capabilities, under the hypothesis that
more expressive models can capture deeper and more nuanced topological patterns. We focus on
two key factors: (1) the linearity of the probe, controlled by enabling or disabling the non-linear
ReLU activation function, and (2) the receptive field of the probe, determined by the number of graph
convolutional layers, L. Tables 2 and 3 show the out-of-sample regression performance of different
probe configurations on complete and sparse neural topology, respectively. We find that linear
probes, though still retaining considerable predictive power, consistently underperform compared to
non-linear probes, with a 31.4% increase in MSE and a drop of more than 0.05 in R2. This suggests
that the relationship between neural topology and language generation performance is inherently
non-linear. We also find that 1-hop GNNs perform best on complete graphs, whereas 2-hop GNNs
outperform on sparse graphs, which is reasonable since the loss of local connectivity by sparsification
can be partially compensated by incorporating information from more distant neighbors, making a
larger receptive field beneficial. Results on more probe configurations can be found in Appendix E.

Table 2: Out-of-sample performance using different probes on complete neural topologies.

LLM Graph Probing MSE ↓ MAE ↓ R2 ↑ ρp ↑ ρs ↑

GPT-2
1-hop linear 0.0067 0.0629 0.7966 0.8930 0.8926
1-hop non-linear 0.0051 0.0529 0.8467 0.9204 0.9240
2-hop non-linear 0.0061 0.0563 0.8152 0.9036 0.9055

Pythia-160M
1-hop linear 0.0036 0.0449 0.8894 0.9431 0.9475
1-hop non-linear 0.0035 0.0421 0.8929 0.9452 0.9515
2-hop non-linear 0.0050 0.0498 0.8465 0.9215 0.9305

Qwen2.5-0.5B
1-hop linear 0.0046 0.0506 0.8596 0.9272 0.9264
1-hop non-linear 0.0036 0.0438 0.8902 0.9436 0.9458
2-hop non-linear 0.0051 0.0512 0.8447 0.9193 0.9221
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Table 3: Out-of-sample performance using different probes on sparse neural topologies where top
10% functional connectivity are reserved (90% sparsity).

LLM Graph Probing MSE ↓ MAE ↓ R2 ↑ ρp ↑ ρs ↑

GPT-2
1-hop linear 0.0098 0.0756 0.7034 0.8443 0.8439
1-hop non-linear 0.0085 0.0690 0.7419 0.8627 0.8666
2-hop non-linear 0.0077 0.0640 0.7667 0.8765 0.8789

Pythia-160M
1-hop linear 0.0096 0.0741 0.7061 0.8431 0.8627
1-hop non-linear 0.0087 0.0673 0.7329 0.8566 0.8833
2-hop non-linear 0.0075 0.0612 0.7704 0.8780 0.8961

Qwen2.5-0.5B
1-hop linear 0.0084 0.0706 0.7462 0.8652 0.8657
1-hop non-linear 0.0076 0.0644 0.7695 0.8788 0.8786
2-hop non-linear 0.0074 0.0623 0.7764 0.8849 0.8922

3.4 Early Emergence

Having empirically validated that the relationship between neural topology and language genera-
tion performance is universal, sparse, and non-linear, there still remains an open question: Is this
dependence an inherent consequence of the LLM’s architectural design, or does it emerge during
pretraining? While definitively answering this question is challenging, in this section we offer an
exploratory analysis from the perspective of LLMs’ learning process.
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Figure 6: Average perplexity and probing
performance throughout pretraining for (a)
Pythia-160M (b) Pythia-410M.

To inspect how the dependence between neural topol-
ogy and perplexity evolves during pretraining, we
perform graph probing on intermediate checkpoints
of the Pythia models at various pretraining steps3.
Figure 6 presents the probing performance through-
out pretraining for Pythia-160M and Pythia-410M,
alongside the corresponding average perplexity val-
ues across the dataset as an indicator of language
generation capability. We find that, although it takes
more than 143,000 pretraining steps for the models
to reduce their average perplexity from over 60,000
to 21.02 (Pythia-160M) and 14.35 (Pythia-410M),
the predictability of perplexity from neural topology
emerges much earlier. Notably, graph probing de-
tects meaningful predictability after only 8 pretrain-
ing steps, when the average perplexity remains as
high as 43,000 and 29,000, respectively. This sug-
gests that LLMs may first establish informative neu-
ral topological structures which are indirectly opti-
mized through parameter updates, before developing
strong next-token prediction capabilities built upon
that topology. In addition, the early emergence of this
topology–performance relationship opens up promis-
ing avenues for monitoring the learning trajectory of LLMs, detecting training failure at an early
stage, designing effective early stopping strategies, and advancing theoretical understanding of LLMs’
learning dynamics.

4 Matching Neural Topology across LLMs

Despite significant discrepancies in architectures, parameters, and training data across different LLMs,
they are all trained to optimize the same next-token prediction objective, whose performance, as we
have shown, is closely tied to the internal neural topology. This raises a natural question: do different
LLMs develop similar neural topology patterns despite their differences? To investigate potential
structural similarity across LLMs, we extend graph probing with contrastive learning to perform
graph matching, as illustrated in Figure 7. This extension encourages graph representations derived

3We do not include other LLMs in this analysis, as their intermediate checkpoints are not publicly available.
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Figure 7: An overview of graph matching. We learn representations of neural topologies derived
from two different LLMs processing the same text dataset. We then perform contrastive learning on
the graph representations such that matching pairs are more similar by inner product.

from the same input text to be more similar than those from different texts. Specifically, suppose we
feed a batch of B token sequences into two LLMs, Ω and Γ. We compute the corresponding neural
connectivity graphs and use two graph probes to encode them into representations ZΩ = [zΩ1 , . . . , z

Ω
B ]

and ZΓ = [zΓ1 , . . . , z
Γ
B ], as described in equations (5–6). Graph matching is implemented using a

contrastive cross-entropy loss that encourages alignment between graph representations:

S = MAT_MUL(ZT
Ω,ZΓ), T = IDENTITY(B), (9)

L =

B∑
i=1

CROSS_ENTROPY(Si,:, Ti,:) +
B∑

j=1

CROSS_ENTROPY(S:,j , T:,j), (10)

where S is the similarity matrix by taking inner product of graph representations and T is the target
identity matrix for graph matching.

After training the graph probes contrastively on a shared set of training texts, the out-of-sample graph
matching performance serves as an indicator of neural topology similarity between two LLMs. To
evaluate this, we adopt the commonly used AUC and GAUC metrics [32], where AUC measures
the global ranking quality across the entire test set, while GAUC computes a local ranking for each
graph pair against all others, making AUC the more challenging metric (see Appendix F for details).
Table 4 presents the graph matching results. As a sanity check, we first perform self-matching using
the same LLM. Given that identical text inputs induce identical neural topologies, the results indeed
show that both AUC and GAUC are close to 1.0, validating the rationality of our methodology. We
then extend the matching experiments across multiple configurations, including: (1) LLMs within the
same family but from different generations, (2) LLMs across different families, and (3) the same LLM
trained with different random seeds. Surprisingly, all cross-model configurations yield high graph
matching performance, with AUC (GAUC) scores ranging from 0.86 (0.87) to 0.95 (0.96). These
results suggest that distinct LLMs develop strikingly similar neural topology patterns, implying the
emergence of shared functional structures despite substantial differences in architectures, parameters,
and training data. Moreover, we observe that cross-seed and cross-generation matching outperform
cross-family matching, which is intuitive given the reduced architectural and training data differences
within the same model family.

Table 4: Graph matching performance between different LLM configurations evaluated on AUC
(×100) and GAUC (×100) at 80% connection sparsity levels (20% density).

Matching LLM Ω LLM Γ AUC GAUC

Self Matching
GPT2 GPT2 97.32 98.64
Pythia-160M Pythia-160M 95.95 96.92
Qwen2.5-0.5B Qwen2.5-0.5B 98.05 99.24

Cross Generation
Qwen2.5-0.5B Qwen2-0.5B 91.45 93.27
Qwen2.5-0.5B Qwen1.5-0.5B 95.19 96.10
Qwen2-0.5B Qwen1.5-0.5B 92.92 94.21

Cross Family
GPT2 Pythia-160M 90.96 92.00
GPT2 Qwen2.5-0.5B 90.30 91.11
Pythia-160M Qwen2.5-0.5B 86.17 87.39

Cross Seed
Pythia-160M-seed1 Pythia-160M-seed2 92.75 93.87
Pythia-160M-seed1 Pythia-160M-seed3 92.48 93.59
Pythia-160M-seed2 Pythia-160M-seed3 92.95 94.20
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5 Related Work

Probing LLMs. Growing concerns over the transparency and steerability of LLMs have driven
recent advances in reverse-engineering LLMs by extracting interpretable features from their neural
activations through probes [45]. Supervised probing typically maps neuron activations to interpretable
semantics through regression or classification [23, 24, 26, 27, 12, 30, 48, 5]. For example, Gurnee
et al. [24] predicted the time and location of input entities from LLM activations. Unsupervised
probing, by contrast, aims to learn a dictionary of disentangled features related to more abstract
concepts [13, 18, 41, 33, 39, 13]. A famous example is the Golden Gate Bridge feature identified
in the Claude 3 Sonnet model [48]. While prior work focused on connecting LLM activations to
external semantics, our work studies the functional topology of neurons in LLMs, and relates this
internal structure directly to language generation performance via graph probing.

Network Neuroscience. The study of functional networks in the human brain has been a central
topic in neuroscience for decades [4, 3, 15, 37] which motivates this research. Brain networks are
typically constructed by correlating fMRI or EEG signals across different neural regions, and then
analyzed using tools from network science [2], which has revealed a range of structural and functional
properties, such as small-worldness [4], economical wiring [9], and functional specialization [15].
More recently, several studies have drawn parallels between LLM activations and human brain
activity [49, 11, 31, 42, 38, 51, 8, 46, 34]. For instance, Tuckute et al. [51] used GPT-2 activations
to identify sentence stimuli that drive or suppress human brain responses. However, while these
efforts focus on representational similarities, the functional topology of neurons within LLMs and its
relationship to the model’s language generation capabilities remain largely unexplored.

6 Discussion

Neurons in LLMs are connected both structurally through the model’s architecture and functionally
through their dynamic responses to input linguistic stimuli. In this work, we focus on the latter
and demonstrate that the language generation performance of LLMs can be reliably predicted from
their functional neural topologies using our proposed graph probing approach. Beyond the shared
sparsity, non-linearity, and early emergence of this topology–performance relationship across models,
we also find that different LLMs, despite substantial differences in architectures, parameters, and
training data, exhibit highly similar topological patterns, as their neural topologies can be matched
with near-perfect accuracy, suggesting a common underlying structure in how token sequences are
processed. These findings imply that LLMs develop intricate and consistent topological structures
among their neurons that are fundamental to their emergent ability to generate coherent language.

While we have empirically shown a strong dependence between next-token prediction perplexity
and neural topology, we have not yet identified specific topological structures such as motifs, or
physical metrics like small-worldness and modularity within these neural graphs. It remains an open
question whether such properties exist in LLMs’ neural topology and play a causal role in shaping
their language generation capabilities. This valuable knowledge, now captured implicitly by the
graph probes, may be further uncovered through careful analysis of the learned graph representations.
Additionally, this paper evaluates LLMs with up to 14B parameters, while leaving graph probing on
even larger models for future work due to the substantial computational costs of both LLM inference
and connectivity graph construction at that scale.

Our graph probing results raise many interesting directions for future research. While we have
linked neural topology to general next-token prediction ability, it remains unclear whether specific
topologies emerge for specialized domains such as mathematical proofs or codes. We conjecture
that certain neurons may become functionally specialized when processing text from particular
domains, which might be identified via graph probing on datasets from diverse fields. Additionally,
recent advances in enhancing LLMs’ reasoning abilities [22] raise a natural question: does reasoning
alter, or is it constrained by, neural topology? Moreover, the observed sparsity and early emergence
of neural topology suggest potential applications in parameter pruning and early training failure
detection, offering promising avenues for reducing the inference and training cost of LLMs. Finally,
graph probing is model-agnostic and can be extended to models other than LLMs. In particular,
applying graph probing to vision-language models may shed light on the neural topology underlying
multi-modal generation capabilities. In all, we believe graph probing offers a promising lens for
understanding AI models and ultimately guiding their improvement in an reliable and safe way.
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A Graph Probing Configuration

Hyperparameters. We train graph probes using the Adam optimizer [28] with mean squared error
(MSE) loss, as defined in Equation (8). The learning rate is set to 0.001, with a batch size of 16. We
apply a learning rate decay strategy, reducing the rate by a factor of 0.1 if the loss does not improve
for 5 consecutive epochs. Each model is trained for up to 100 epochs, with early stopping triggered if
no improvement is observed for 20 epochs. Dropout is not used, as preliminary experiments showed
no significant impact on regression performance.

Computational Resources. LLM inference for computing neural topologies and perplexity scores
requires GPUs with large memory. All experiments were conducted on a Linux server equipped
with 8 NVIDIA A100 GPUs (80GB memory each). In contrast, training graph probes is relatively
lightweight and can be performed on a single GPU with 16GB memory in less than 1 hour.

B Experimented LLMs

We run graph probing experiments on a diverse range of LLMs across three different families, with
the numper of parameters ranging from 124M to 14B. Basic information of these experimented LLMs
is summarized in Table 5.

Table 5: Basic information of the experimented LLMs.

LLM family #params #layers #neurons per layer experimented layer id

GPT-2
124M 12 768 1-12
355M 24 1024 12
774M 36 1280 18

Pythia

160M 12 768 1-12
410M 24 1024 12
1.4B 24 2048 12
2.8B 32 2560 16
6.9B 32 4096 16
12B 36 5120 18

Qwen2.5

0.5B 24 896 12
3B 36 2048 18
7B 28 3584 14

14B 48 5120 24

C Datasets

We conduct graph probing experiments using the same text datasets on which the LLMs were
originally pretrained. Specifically, we adopt the Pile dataset [17] for models in the Pythia family,
and the OpenWebText dataset [20] for GPT-2 and Qwen2.5 models. For each dataset, we randomly
sample 10,000 text sequences to construct neural connectivity graphs. Each sample is generated by
merging and tokenizing raw text until it reaches a length between 256 and 1024 tokens, which defines
the length of the corresponding neural activity time series used for computing pairwise correlations.
We then construct a text-responsive neural connectivity graph for each sample and compute its
associated perplexity score. To remove outliers that distort the distribution, we filter out the top 1%
and bottom 1% of samples based on perplexity. Finally, we normalize all perplexity values to the
range [0, 1] by subtracting the minimum perplexity and dividing by the observed range. Summary
statistics for the constructed datasets are provided in Table 6.

Table 6: Basic information of constructed graph probing datasets.

LLM family Dataset #tokens #graphs #training graphs #test graphs
GPT-2 OpenWebText 7,020,215 10,384 8,308 2,076
Pythia Pile 5,216,371 8,011 6,409 1,602
Qwen2.5 OpenWebText 7,935,555 11,452 9162 2,290
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D Perplexity Regression Results
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Figure 8: Out-of-sample performance of graph probing on different LLMs, including GPT2-
medium, GPT2-large, Pythia-410M, Pythia-1.4B, Pythia-2.8B, Pythia-6.9B, Pythia-12B, Qwen2.5-
3B, Qwen2.5-7B, and Qwen2.5-13B.
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E Results of Different Probe Dimensions

In addition to the number of graph convolutional layers (L), the hidden dimensionality (d) is a key
factor influencing the expressive power of graph probes. We report out-of-sample graph probing
performance across different values of d in Tables 7–9. As expected, we observe a monotonic im-
provement in perplexity regression performance with increasing d, indicating that higher-dimensional
probes are more capable of capturing fine-grained topological patterns in neural connectivity graphs.
Notably, all experiments in the main paper were conducted with d = 32, which already yielded strong
predictive accuracy despite its relatively small size.

Table 7: Out-of-sample perplexity regression performance for GPT-2 using different dimensions d on
sparse neural topologies where top 10% functional connections are reserved (90% sparsity).

d MSE ↓ MAE ↓ R2 ↑ ρP ↑ ρS ↑
4 0.0098 0.0738 0.7041 0.8400 0.8525
8 0.0089 0.0707 0.7321 0.8566 0.8621

16 0.0085 0.0692 0.7431 0.8631 0.8726
32 0.0085 0.0690 0.7419 0.8627 0.8666
64 0.0062 0.0584 0.8112 0.9008 0.9071

128 0.0058 0.0562 0.8249 0.9090 0.9149
256 0.0050 0.0524 0.8496 0.9224 0.9274

Table 8: Out-of-sample perplexity regression performance for Pythia-160M using different dimen-
sions d on sparse neural topologies where top 10% functional connections are reserved (90% sparsity).

d MSE ↓ MAE ↓ R2 ↑ ρP ↑ ρS ↑
4 0.0095 0.0705 0.7087 0.8422 0.8762
8 0.0089 0.0688 0.7276 0.8534 0.8761

16 0.0084 0.0660 0.7417 0.8622 0.8783
32 0.0074 0.0627 0.7736 0.8796 0.9004
64 0.0076 0.0630 0.7687 0.8779 0.8970

128 0.0058 0.0542 0.8227 0.9073 0.9264
256 0.0051 0.0515 0.8436 0.9185 0.9336

Table 9: Out-of-sample perplexity regression performance for Qwen2.5-0.5B using different di-
mensions d on sparse neural topologies where top 10% functional connections are reserved (90%
sparsity).

d MSE ↓ MAE ↓ R2 ↑ ρP ↑ ρS ↑
4 0.0090 0.0725 0.7265 0.8525 0.8539
8 0.0084 0.0689 0.7433 0.8634 0.8686

16 0.0079 0.0659 0.7592 0.8733 0.8757
32 0.0078 0.0655 0.7633 0.8781 0.8839
64 0.0049 0.0517 0.8505 0.9224 0.9257

128 0.0047 0.0510 0.8569 0.9259 0.9311
256 0.0042 0.0471 0.8714 0.9336 0.9408

F Graph Matching Metrics

Given the predicted similarity matrix S ∈ RN×N and the target similarity matrix T = IDENTITY(N),
we calculate the following metrics for graph matching [32]:

AUC = AREA_UNDER_ROC(flatten(S), flatten(T )), (11)

GAUC =
1

2N

N∑
i=1

(AREA_UNDER_ROC(Si,:, Ti,:) + AREA_UNDER_ROC(S:,i, T:,i)). (12)

16


	Introduction
	Graph Probing
	Results
	Predictability
	Sparsity
	Non-linearity
	Early Emergence

	Matching Neural Topology across LLMs
	Related Work
	Discussion
	Graph Probing Configuration
	Experimented LLMs
	Datasets
	Perplexity Regression Results
	Results of Different Probe Dimensions
	Graph Matching Metrics

