
Road Planning for Slums via Deep Reinforcement Learning
Yu Zheng∗

Hongyuan Su∗
Department of Electronic Engineering,

BNRist, Tsinghua University
Beijing, China

Jingtao Ding
Department of Electronic Engineering,

BNRist, Tsinghua University
Beijing, China

Depeng Jin
Department of Electronic Engineering,

BNRist, Tsinghua University
Beijing, China

Yong Li†
Department of Electronic Engineering,

BNRist, Tsinghua University
Beijing, China

ABSTRACT
Millions of slum dwellers suffer from poor accessibility to urban
services due to inadequate road infrastructure within slums, and
road planning for slums is critical to the sustainable development
of cities. Existing re-blocking or heuristic methods are either time-
consuming which cannot generalize to different slums, or yield
sub-optimal road plans in terms of accessibility and construction
costs. In this paper, we present a deep reinforcement learning based
approach to automatically layout roads for slums. We propose a
generic graph model to capture the topological structure of a slum,
and devise a novel graph neural network to select locations for the
planned roads. Through masked policy optimization, our model
can generate road plans that connect places in a slum at minimal
construction costs. Extensive experiments on real-world slums in
different countries verify the effectiveness of our model, which can
significantly improve accessibility by 14.3% against existing baseline
methods. Further investigations on transferring across different
tasks demonstrate that our model can master road planning skills in
simple scenarios and adapt them to much more complicated ones,
indicating the potential of applying our model in real-world slum
upgrading. The code and data are available at https://github.com/
tsinghua-fib-lab/road-planning-for-slums.
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1 INTRODUCTION
With rapid urbanization, currently about 4 billion people around
the world live in cities, while 1 billion of them live in over 200,000
slums [49, 60]. The vast majority of slums suffer from poor accessi-
bility, with internal places not connected to external road systems,
and many places not even having addresses [10, 24]. Besides be-
ing unreachable by motor vehicles, urban services depending on
road systems, such as piped services of water and sanitation buried
under roads, cannot be delivered to places in slums, which leads
to severe problems in public health, urban environment, etc [49].
To tackle these problems, local upgrading of slums has become the
primary approach for the sustainable development of cities, rather
than moving all the people to cities, due to the massive number
of slum dwellers and the socio-economic costs [4, 24, 43, 59]. Par-
ticularly, improving the accessibility by planning roads plays an
essential role in slum upgrading [9, 50].

Different from city-level road planning which grows a road
network from the top down and arranges land functionalities ac-
cordingly [15], road planning for slums is a bottom-up process in
which existing houses determine the possible forms of the road
network [50]. Therefore, current city-level approaches cannot han-
dle the micro-level road planning within a slum. Meanwhile, road
planning for slums is challenging due to its large solution space.
Take a moderate-size slum as an example, the solution space of
planning 40 road segments from 80 candidate locations surpasses
1023, which is too large for exhaustive enumeration. In practical
slum upgrading, re-blocking [24, 37] strategy is adopted. It involves
negotiations with multiple stakeholders and usually takes a long
time for a specific case, thus it can not generalize globally to dif-
ferent slums. Given the enormous number of slums, it is necessary
to develop a computational method that can automatically accom-
plish road plans with superior connectivity at minimal construction
costs [9, 50]. Such a model can significantly benefit slum upgrading
and eventually help achieve cities without slums [8, 9, 24, 59].

One pioneering work by Brelsford et al. [9] formulates road
planning for slums as a constrained optimization problem, and
proposes a heuristic search method to generate road plans. It makes
this problem computationally solvable and has been adopted for
slums in South Africa and India. Although the heuristic can be
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applied to different slums, we empirically show that the quality
of the obtained plans is not guaranteed, with the accessibility and
construction costs far from optimal. Fortunately, with the rapid
development of artificial intelligence (AI), it is promising to leverage
AI to solve the problem of road planning for slums. First, data-driven
parametric models have strong generalization ability, which can
adapt to different scenarios [27, 57, 63]. In addition, AI models,
especially deep reinforcement learning (DRL) algorithms, are good
at searching in a large action space to optimize various objectives.
The action space can be effectively eliminated by predicting rewards
with a value network and sampling actions via a policy network [23,
30, 38, 47]. Particularly, DRL has been deployed in similar planning
tasks, such as solving the vehicle routing problem [12, 41, 65] and
designing circuit chips [3, 36, 44].

Inspired by the success of DRL, we propose a DRL-based method
to solve this significant real-world problem, road planning for slums.
Since slums are diverse in the original geometric space, e.g., existing
houses and paths can be in various irregular shapes, we propose a
generic graph model to describe a slum, solving the problem from
topology instead of geometry. The topology invariance of the graph
model makes our method capable of generalizing to different slums
of arbitrary forms. We further develop a policy network to select
road locations and a value network to predict the performance
of road planning based on a novel graph neural network (GNN),
overcoming the difficulty of efficient search in the huge action
space. We design a topology-aware message passing mechanism
for GNN, which first gathers various topological information to
edges from nodes, faces, and edges themselves, then broadcasts
edge embeddings back to learn effective representations of roads
and places in the slum. Furthermore, we develop a masked policy
optimization method and connectivity-priority reward functions to
optimize various objectives, including accessibility, travel distance,
and construction costs. We conduct experiments on real-world
slums to verify the effectiveness of our proposed model.

To summarize, the contributions of this paper are as follows,

• We formulate road planning for slums as a sequential decision-
making problem, and propose a DRL-based solution.

• We develop a novel GNN and a multi-objective optimization
method based on a generic graph model for slums. The proposed
model can learn effective representations of places and roads in
a slum, which enables superior road planning policy.

• We conduct extensive experiments on slums in different coun-
tries, and the results demonstrate the advantage of our proposed
method against baseline methods. Our model can generate road
plans with both higher accessibility and lower construction costs.
Moreover, we also show the transferability of our model from
small slums to large slums, indicating the potential of applying
our method in real-world slum upgrading.

2 PROBLEM STATEMENT
From the perspective of connectivity, a slum can be decomposed
into two categories of elements, places and roads [9]. Specifically,
places are the houses and internal facilities of the slum, and roads
are the street system that connects various external urban services.
In most slums, a large fraction of places are disconnected from
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Figure 1: (a) A slum in Harare, ZWE. Internal places in the
slum are not connected to the external road system, making
urban services inaccessible to slum dwellers. (b) Geomet-
ric description of the slum. Red polygons are places discon-
nected to roads, and internal segments (green and red) are
candidate locations for new roads. Best viewed in color.
roads, as shown in Figure 1. Such poor connectivity makes ba-
sic urban services inaccessible, e.g., ambulances and fire fighting
trucks cannot reach the disconnected places during emergencies;
water and sanitation pipes buried under roads cannot be provided.
Therefore, it is crucial to upgrade slums by planning more roads.
To deliver basic urban services, a minimal road network needs to
make all places directly adjacent to roads, which is called universal
connectivity [9]. Besides the minimally necessary accesses, more
roads are expected to promote internal transportation and reduce
travel distance for slum dwellers. To minimize disruption to the
slums, new roads are not allowed to pass through the middle of
places, thus the candidate locations are restricted to the spacing
between places. It is worth noting that each planned road segment
also has a corresponding construction cost.

As illustrated in Figure 1(b), to describe the problem in geometric
terms, a slum is a two-dimensional planar surface𝑈 whose exterior
boundaries 𝐸 are existing roads. The surface is filled by a tessellation
of faces (polygons) 𝑃 , where each polygon 𝑝𝑖 is a place in the slum1.
Polygon boundaries in the interior of the surface represent the
spacing between places, which form a collection of segments 𝑆
and serve as the candidate locations for new roads. Road planning
is to select a subset of these segments for construction as roads.
Therefore, it can be formulated as follows:
Input: A planar surface 𝑈 with exterior boundaries 𝐸 for the slum,
a collection of polygons 𝑃 for places in the slum, a collection of
segments 𝑆 with their corresponding cost 𝐶 for road construction,
and the road planning budget 𝐾 .
Output: A subset 𝑅 of size 𝐾 from 𝑆 for construction as roads.
Objective: (1) Connecting all polygons in 𝑃 to the road system 𝐸∪𝑅.
(2) Minimizing the travel distance between any pair of polygons
𝑝𝑖 and 𝑝 𝑗 over the road network 𝐸 ∪ 𝑅 . (3) Minimizing the overall
construction cost for the road plan

∑
𝑖∈𝑅 𝐶𝑖 .

3 METHOD
3.1 Overall Framework
We formulate the road planning for slums as a sequential decision-
making problem (see Section A.1 of the appendix for specific defi-
nitions of the Markov Decision Process (MDP)). As illustrated in
1A planar surface is a graph which can be drawn in the plane without any edges
crossing. When a planar graph is drawn with no crossing edges, it divides the plane
into a set of regions, called faces.
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Figure 2: Schematic of our approach. At each step, the agent
receives states and rewards from the environment and out-
puts the road locations for the slum. Best viewed in color.

Figure 3a, given the planning budget, which is the total number of
road segments, a road plan is accomplished through a sequence of
location selection decisions, where at each step of the sequence, one
new road segment is planned at a specific location. The goal of the
sequential decision-making problem is to improve the connectivity
and accessibility of the slum at minimal costs.

As shown in Figure 2, we develop an agent with a policy network
and a value network to take actions and predict returns, respec-
tively, and a shared GNN model as the state encoder. To address
the challenge of geometrical diversity, we tackle road planning for
slums at the level of topology instead of geometry with a generic
graph model (Section 3.2). We then propose a novel GNN model to
achieve a decent location selection policy on the graph (Section 3.3).
In order to overcome the difficulty of multi-objective optimization
in road planning, we further develop a masked policy optimization
method with connectivity-priority reward functions (Section 3.4).

3.2 Graph Model
It is challenging to plan roads directly at the geometric level, since
slums are very diverse in the original geometric space, e.g., the
polygons of places can be in various irregular shapes, and the
segments can intersect at almost any angle. In addition, the spatial
relationship between different geometries is more important for
road planning than the specific shapes of geometries. In contrast
to the diverse geometries, there exists certain invariance in the
topology of places and roads in cities [9, 62], which can support
the uniform modeling of different slums. Therefore, we solve the
road planning problem from the topological viewpoint instead of
the geometric one. Specifically, we construct a planar graph to
represent a slum with the contained places and roads, transforming
the geometries into elements on the graph, such as nodes, edges,
and faces. In this way, we develop a generic graph model which
can handle slums of arbitrary geometric forms at different scales
with the same logic, solving the challenge of geometrical diversity.

The planar graph is constructed based on the original geometrical
descriptions of the slum, including the surface, polygons, and seg-
ments. As shown in Figure 4(a), vertices and boundary segments of
polygons become nodes and edges on the graph, respectively. Mean-
while, the original polygons naturally become faces surrounded by
edges on the planar graph, where each face in the graph represents
a place which is usually a house in the slum. Each edge has a road
attribute indicating whether it is a road segment or not, and a road

segment can be either an existing external road or a planned new
road. Moreover, we preprocess the transformed planar graph of
the slum to remove redundant information, as illustrated in Figure
4(b-c). First, we merge multiple nodes/edges within a threshold
distance as one node/edge, since they are supposed to share the
same accessibility in the real space. We then delete nodes with de-
gree 2 and merge the corresponding two edges (construction costs
are added) to simplify the graph, which have no influence on road
planning. Finally, we normalize the length of edges and align the
coordinates, in order to support slums in different scales.

With the above generic graph model, road planning for slums
is transformed into a sequential decision-making problem on a
dynamic graph. Specifically, states are the information of the current
graph, and actions for a road planning policy are edge selections
on the graph. The graph also transits accordingly, i.e., the road
attribute of the selected edge changes from False to True, which in
turn leads to subsequent changes in accessibility and travel distance
of the slum. For example, with the newly planned road, some faces
(places) are connected to the road system, and the travel distance
between several faces is reduced. These changes are also reflected
in the reward, which can be directly computed from the graph itself.

3.3 Planning with Graph Neural Networks
With the generic graph model of slums, we now introduce our pro-
posed GNN model which performs road planning on the dynamic
graph. As the task is to select edges, a policy needs to decide the
probability of choosing different edges at each step. Since the topo-
logical information is critical to the effect of road planning, when
computing the selection probability of each edge, it is necessary to
consider its neighbors and even the whole graph, such as the travel
distance of its neighboring faces. Thus, we adopt GNN in our policy
because of its strong ability to extract topological information and
fuse neighborhood features. As shown in Figure 2, we develop a
GNN state encoder, which plays a fundamental role in the road
planning agent. The learned representations from GNN are shared
between the policy network and the value network, serving as the
basis for policy making and return prediction.

To address the challenge of complex topology in road planning,
we propose a novel GNN model which takes nodes, edges and faces
into consideration. Figure 3b demonstrates our proposed road plan-
ning policy based on GNN. We first design rich features regarding
accessibility, travel distance, and construction costs as the input
of GNN. We then design a topology-aware message passing mech-
anism to learn effective representations of topological elements
on the graph. Finally, we utilize an edge-ranking policy network
to score edges based on the learned edge embeddings, supporting
edge selection on the graph.

Input Features for Topological Elements. Topological features
reflect the current state of road planning, serving as the original
input for GNN to learn representations of topological elements. As
illustrated in Table 1, we incorporate rich information about road
planning into the designed features for nodes, edges, and faces.
Specifically, there are static features that do not change with the
actions of the agent, such as the coordinates and construction cost,
while most of the features are dynamic and alter according to ac-
tions at each step. These meaningful features describe the current
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Figure 3: (a) Road planning for slums as a sequential decision-making problem, where one single road segment is planed at
each step. In stage I, the agent plan roads (blue) to achieve universal connectivity, i.e., all disconnected places are connected
to the road system. In stage II, the agent add road segments (orange) to reduce travel distance. (b) The proposed GNN model.
We design rich features for nodes, edges and faces. Topology-aware message passing is proposed, which contains Node2Edge
Propagation (N2E), Face2Edge Propagation (F2E), Edge Self-Propagation (E2E) and Edge Embedding Broadcast (EEB). Finally, a
edge-ranking policy network is developed to sample actions of edge selection. Best viewed in color.

(a) (c)
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(b)

Figure 4: (a) The constructed graph transformed from the
original geometrical descriptions of the slum. Faces are poly-
gons (places). Nodes are vertices of polygons. Edges are poly-
gon boundary segments. (b) We simplify the graph by merg-
ing nearby edges (top) and nodes (middle) within certain
threshold, and removing nodes with degree 2 (bottom). (c)
The graph after preprocessing. Road planning solutions on
the simplified graph can be easily mapped back to the origi-
nal graph. Best viewed in color.

accessibility and travel distance of various places in the slum, which
helps to decide which edges to plan as road segments. For example,
Connected means whether a face is connected to the road system,
thus building a road to an unconnected face can significantly im-
prove the accessibility of the corresponding place to external urban
services. Similarly, Straightness is the ratio of road network distance
to the Euclidean distance of an edge, which directly indicates the
travel distance between two places, and therefore selecting edges
with high Straightness can substantially reduce long detours in
the slum. These features support effective representation learning
and subsequent decision-making, and details of all the designed
topological features are introduced in Section A.2 of the appendix.

Table 1: Designed features for topological elements.

Topology Feature Dimension Type

Node

Coordinates 2 Static
Centrality 4 Static
On Road 1 Dynamic
Road Ratio 1 Dynamic
Avg N2N Dis 1 Dynamic

Edge
Cost 1 Static
Road 1 Dynamic

Straightness 1 Dynamic

Face
Connected 1 Dynamic
Avg F2F Dis 1 Dynamic
F2E Dis 1 Dynamic

Topology-awareMessage Passing. Since the policy selects edges
on the graph to plan roads, we propose an edge-centric GNN to
learn representations. We first encode the input topological features
to dense embeddings with separate weight matrices as follows,

𝑛
(0)
𝑖

=𝑊
(0)
𝑛 𝐴𝑛𝑖 , 𝑒

(0)
𝑖 𝑗

=𝑊
(0)
𝑒 𝐴𝑒𝑖 𝑗 , 𝑓

(0)
𝑖

=𝑊
(0)
𝑓

𝐴𝑓𝑖 , (1)

where 𝐴𝑛𝑖 , 𝐴𝑒𝑖 𝑗 and 𝐴𝑓𝑖 are input attributes for nodes, edges and
faces,𝑊𝑛 ,𝑊𝑒 and𝑊𝑓 are learnable embedding matrices.

To address the challenge of complex topological elements, we
design a topology-aware message passing mechanism, which first
pulls information from diverse topological elements into edges
through node-to-edge propagation, face-to-edge propagation, and
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edge self-propagation, and then pushes aggregated topological infor-
mation back through edge embedding broadcast, as shown in Figure
3b. The edge embeddings are obtained as follows.

Node2Edge Propagation. For each edge, we take the embeddings
of its two connected nodes and propagate them through a linear
transformation layer and a non-linear activation layer. The node-
to-edge message is computed as follows,

𝑒
(𝑙+1)
𝑖 𝑗,𝑛→𝑒

= tanh(𝑊 (𝑙+1)
𝑛→𝑒 (𝑛 (𝑙 )

𝑖
∥𝑛 (𝑙 )

𝑗
)), (2)

where ∥ means concatenation, and𝑊𝑛→𝑒 is a transformation layer.
Face2Edge Propagation. For each edge, we propagate the em-

beddings of its adjacent faces, and the face-to-edge message is
computed as follows,

𝑒
(𝑙+1)
𝑖 𝑗,𝑓→𝑒

= tanh( 1

𝑁
𝑓

𝑖 𝑗

∑︁
𝑘∈𝐹𝑖 𝑗

𝑊
(𝑙+1)
𝑓→𝑒

𝑓
(0)
𝑘

), (3)

where 𝑁 𝑓

𝑖 𝑗
is the number of elements in 𝐹𝑖 𝑗 , the set of adjacent faces

for edge 𝑒𝑖 𝑗 , and𝑊𝑓→𝑒 is a linear transformation layer.
Edge Self-Propagation. Since each edge has its own attributes,

we further include the propagation message from the edge itself,
which is computed as follows,

𝑒
(𝑙+1)
𝑖 𝑗,𝑒→𝑒

= tanh(𝑊 (𝑙+1)
𝑒→𝑒 𝑒

(0)
𝑖 𝑗

), (4)

where a linear transformation matrix𝑊𝑒→𝑒 is adopted.
The edge embedding is obtained by integrating the above three

propagated messages as follows,

𝑒
(𝑙+1)
𝑖 𝑗

= tanh(𝑊 (𝑙+1)
𝑒 (𝑒 (𝑙+1)

𝑖 𝑗,𝑛→𝑒
∥𝑒 (𝑙+1)

𝑖 𝑗,𝑓→𝑒
∥𝑒 (𝑙+1)

𝑖 𝑗,𝑒→𝑒
)), (5)

where the three messages are concatenated and transformed with
a linear layer𝑊 (𝑙+1)

𝑒 .
Edge Embedding Broadcast.We then push the edge embeddings

back to nodes to update their embeddings as follows,

𝑛
(𝑙+1)
𝑖,𝑒→𝑛

=
1
𝑁𝑖

∑︁
𝑗∈N𝑖

𝑒
(𝑙+1)
𝑖 𝑗

, (6)

𝑛
(𝑙+1)
𝑖

= 𝑛
(𝑙 )
𝑖

+ 𝑛 (𝑙+1)
𝑖,𝑒→𝑛

, (7)

where for each node, we average the embeddings of its connected
edges and add it to the node embedding.

By stacking multiple layers of the above topology-aware mes-
sage passing, each node or edge can exchange information with
neighbors on the graph. We use the obtained embeddings at the
last layer, 𝑒 (𝐿)

𝑖 𝑗
and 𝑛 (𝐿)

𝑖
, as the final representations, where 𝐿 is a

hyper-parameter in our model. Through topology-aware message
passing, the obtained edge representations can well capture the
information about accessibility, travel distance, and construction
costs of places and roads from its neighbors, which can effectively
support the road planning policy.

Edge-ranking Policy Network. The policy must generate the
probability of selecting different edges at each step. Therefore, we
develop an edge-ranking policy network to score each edge, based
on the obtained edge embeddings fromGNN. The score is calculated
with a multi-layer perceptron (MLP) as follows,

𝑠𝑖 𝑗 = MLP𝑝 (𝑒 (𝐿)𝑖 𝑗
). (8)

The action of edge selection is sampled from a probability distribu-
tion over different edges according to their corresponding scores 𝑠𝑖 𝑗
estimated by the policy network. Since the obtained edge embed-
dings contain rich topological information, the road planning action
made by the policy network takes into account the accessibility,
travel distance, and construction cost of the slum.

3.4 Multi-objective Policy Optimization
Among the three objectives, accessibility, i.e., achieving universal
connectivity for all places in the slum, is crucial for residents in the
slum to access basic urban services, which is the primary target of
road planning. Therefore, it is necessary to prioritize connectivity
when optimizing the policy, and further reduce travel distance after
universal connectivity is achieved. Meanwhile, for both connectiv-
ity and travel distance, it is desirable to optimize them at minimal
construction cost. Towards this end, we propose a masked policy
optimization method and connectivity-priority reward functions
with two stages, as shown in Figure 3a. The optimization method
encourages the policy to achieve universal connectivity in stage I,
then reduce travel distance in stage II, preferring low construction
cost in the whole process.

Stage I. The goal of this stage is to achieve universal connectivity
as quickly as possible, making all places in the slum connected to the
road system and accessible to urban services. Therefore, each new
planned road segment is expected to connect more faces (places)
that are not yet connected to any road segments. Meanwhile, since
road planning is a gradual extension of the existing road system,
a new road segment can not be created as a separate component
without touching the already planned roads. We thus design an
action mask to indicate feasible actions in this stage for the policy
network, and the mask value of each edge is calculated as follows,

𝑚𝑖 𝑗 = 1[On_Road(𝑛𝑖 )] ∧ 1[
∑︁

𝑓 ∈𝐹𝑛𝑗

(1 − Connected(𝑓 )) ≥ 1], (9)

where 𝐹𝑛 𝑗
represents all the faces that contain the node 𝑛 𝑗 . In other

words, the action mask requires the selected edge to start from a
road node and connect at least one unconnected face The mask value
is multiplied over the obtained scores from the policy network in
(8), which serves as the selection probability of different edges,

𝑃𝑟𝑜𝑏 (𝑒𝑖 𝑗 ) =
𝑒𝑠𝑖 𝑗∑

(𝑢,𝑣) ∈E 𝑒𝑠𝑢𝑣
∗𝑚𝑖 𝑗 , (10)

where E denotes all the edges on the graph. With the action mask,
only those edges that start from existing roads and connect discon-
nected faces will be considered by the policy.

Besides the action mask, we also design a corresponding reward
function in this stage, which is a weighted sum of the number of
newly connected faces and the construction cost of the planned
road. Given the action 𝑎𝑘 at the 𝑘-th step selecting the edge 𝑒𝑖 𝑗 , the
reward is calculated as follows,

𝑟𝑘 = 𝛼1
∑︁

𝑓 ∈𝐹𝑛𝑗

(1 − Connected(𝑓 )) + 𝛼2C𝑒𝑖 𝑗 , (11)

where C𝑒𝑖 𝑗 is the construction cost of the road segment specified
by 𝑒𝑖 𝑗 , and 𝛼1 and 𝛼2 are hyper-parameters in our model.
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B
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(a) (b)
Figure 5: (a) In stage I, the planned roads (blue segments)
connect all disconnected places. However, many places, even
nearby places, still suffer from high travel distance. In this
example, place A and B are next to each other, while it re-
quires a long detour (green path) between them by vehicle.
(b) In stage II, roads are planned (orange segments) to reduce
travel distance. Now the trip from place A to B (green path)
is much shorter. Best viewed in color.

Stage II. As shown in Figure 5(a), after the slum becomes univer-
sally connected in stage I, the generated road network looks like
a tree with many dead-ends, which is undesirable in reality [2, 5].
Meanwhile, the traffic between some places is still poor and re-
quires long detours, even for some nearby places. Therefore, stage
II aims to add more roads to reduce travel distance within the slum,
as shown in Figure 5(b). We still require the planned road segments
to start from existing road nodes, and the mask value of different
edges are calculated as follows,

𝑚𝑖 𝑗 = 1[On_Road(𝑛𝑖 )] . (12)

The action probability is obtained in the same way as (10).
For the reward function given action 𝑎𝑘 selecting edge 𝑒𝑖 𝑗 , we

compute the pairwise travel distance reduction of the slum, and
combine it with construction cost,

𝐷 (𝑘) = |𝐹 | ( |𝐹 | − 1)
2

|𝐹 |−1∑︁
𝑢=1

|𝐹 |∑︁
𝑣=𝑢+1

𝑑 (𝑓𝑢 , 𝑓𝑣 ;𝑘), (13)

𝑟𝑘 = 𝛼1 (𝐷 (𝑘) − 𝐷 (𝑘 + 1)) + 𝛼2C𝑒𝑖 𝑗 , (14)

where 𝑑 (𝑓𝑢 , 𝑓𝑣 ;𝑘) denotes the travel distance between two faces, 𝑓𝑢
and 𝑓𝑣 , over the road network at the 𝑘-th step.

With the designed action mask and reward functions, the policy
is guided to connect unconnected faces and reduce travel distance
with low construction costs in the two stages, respectively.

Value Network and Optimization. Besides the policy network,
we follow the actor-critic manner [30] and develop a value network
to predict the effect of road planning. Since places and roads are
captured with a graph, we compute graph-level representations
to summarize the current state of the whole slum. Specifically, we
take the average of all the node embeddings and edges embeddings,
and also include a one-hot encoding of the stage as follows,

𝑛𝑎𝑣𝑔 =
1
|N |

|N |∑︁
𝑖=1

𝑛
(𝐿)
𝑖

, 𝑒𝑎𝑣𝑔 =
1
|E |

∑︁
(𝑖, 𝑗 ) ∈E

𝑒
(𝐿)
𝑖 𝑗

, (15)

ℎ𝑔 = 𝑛𝑎𝑣𝑔 ∥𝑒𝑎𝑣𝑔 ∥one-hot(𝑠𝑡𝑎𝑔𝑒), (16)

whereN and E are the sets of nodes and edges, and ℎ𝑔 is the graph
representation. We utilize an MLP model to predict the return,

𝑟 = MLP𝑣 (ℎ𝑔). (17)

Table 2: Basic information of experimented slums. D.R.
means the ratio of disconnected places.

Location Place Segment D.R. Solution

Harare, ZWE 32 85 37.5% 4 × 1020
Cape Town, ZAF 34 91 44.1% 6 × 1025
Cape Town, ZAF 59 164 59.3% 5 × 1047
Mumbai, IND 92 208 58.7% 1 × 1060

Finally, we adopt Proximal Policy Optimization (PPO) [45] to update
the parameters of the policy network and value network, which
encourages the agent to conduct safe and efficient exploration in
the action space.

4 EXPERIMENTS
4.1 Experiment Settings
Slum Data. We conduct experiments on slums of different scales
from different countries with publicly released data [9]. Table 2
shows the basic information of these slums, where we list the
number of places and segments, as well as the size of the solution
space. Notably, all the slums suffer from poor accessibility, with
over 40% of places disconnected from road systems. More details of
the data are introduced in Section B of the appendix.

Baselines. We compare our model with the following methods.

• Random. This method selects road segments randomly.
• Greedy. This method selects new road segments greedily accord-
ing to accessibility (Greedy-A) and construction cost (Greedy-C).

• Masked. We add our proposed action mask to Random and
Greedy baselines. Masked baselines select road segments that
are True in the mask randomly (greedily).

• Minimum Spanning Tree (MST). A graph is built where nodes
represent slums, edges represent road segments and edge weights
represent road construction costs.We use Kruskal’s algorithm [31]
to grow a minimum spanning tree.

• Genetic Algorithm (GA) [20]. This type of method is widely
adopted in road planning. We include a generative version (GA-
G) that adopts a linear layer as genes and builds one road at
one step by multiplying edge features with a linear layer as
sampling probability. We also include a swap version (GA-S)
that directly uses the selection of road segments as genes and
performs swapping between different solutions at each step.

• Heuristic Search (HS-MC) [9]. This recently proposed method
formulates road planning for slums as a constrained optimiza-
tion problem. It samples paths from external boundary roads to
unconnected places using the Monte Carlo techniques [6].

• DRL-MLP. We implement a simplified DRL model by replacing
the proposed GNN with an MLP, thus it ignores topological
information when planning roads.

It is worthwhile to notice that Greedy-A, MST, GA, HS-MC and our
DRL models are all with action masks themselves. We also include
two generative models [14, 28], based on Generative Adversarial
Networks (GAN) [22] and Variational Auto-Encoder (VAE) [29],
though manual adjustments are required for these methods.
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Table 3: Road planning performance comparison. Lower is better. F and INF means failing to achieve universal connectivity.

Method Harare, ZWE Cape Town, ZAF (A) Cape Town, ZAF (B) Mumbai, IND
NR AD SC NR AD SC NR AD SC NR AD SC

Random 29 1.06 6.30 F INF 10.83 F INF 20.76 F INF 26.05
Random (masked) 10 1.00 6.13 14 1.62 10.37 54 2.77 19.95 42 2.50 24.92

Greedy-A (masked)∗ 8∗ 0.63 5.04 13∗ 1.12 10.42 28∗ 1.66 18.91 29∗ 1.77 25.42
Greedy-C∗ 20 0.84 3.85∗ 35 1.83 7.03∗ F INF 14.10∗ F INF 19.45∗

Greedy-C (masked)∗ 11 0.84 3.85∗ 14 1.81 7.23∗ 35 2.22 14.29∗ 45 2.81 19.28∗
GAN (manually adjusted) - 0.70 5.71 - 1.33 9.52 - 2.05 17.72 - 1.72 24.34
VAE (manually adjusted) - 0.71 5.14 - 1.31 10.70 - 2.06 17.58 - 1.68 23.84

MST (masked) 11 0.59 5.57 14 1.17 8.75 35 1.54 17.16 45 1.63 22.92
GA-G (masked) 11 0.58 4.60 14 1.14 8.72 34 1.99 18.95 42 1.87 24.26
GA-S (masked) - 0.58 5.25 - 1.21 8.44 - 1.89 17.72 - 1.88 23.22
HS-MC (masked) 13 0.62 5.31 16 1.09 9.09 37 1.55 16.98 43 1.61 23.00

DRL-MLP (ours, masked) 11 0.52 4.38 14 0.96 8.28 32 1.57 15.66 31 1.52 22.93
DRL-GNN (ours, masked) 9 0.50 4.60 13 0.93 8.24 31 1.51 15.62 29 1.51 22.82

impr% v.s. HS-MC -25.0% -19.4% -17.5% -18.8% -14.7% 9.8% -16.2% -2.6% -8.0% -32.6% -6.21% -0.8%
Build All Roads - 0.47 11.50 - 0.80 19.82 - 1.21 37.55 - 1.36 49.25

∗ Although they are equal to or even smaller than the bolded numbers, these methods exhibit imbalanced results with much worse performance on
the other two metrics. Thus, the bolded and underlined numbers are assigned to the lowest and the second lowest values, excluding greedy methods.

Evaluation Metrics. As introduced in Section 2, we evaluate a
road plan concerning accessibility, travel distance, and construction
cost. The specific definitions are as follows,
• For accessibility, it is desired to achieve universal connectivity as
early as possible, thus we calculate the number of road segments
(NR) consumed to achieve universal connectivity.

• For travel distance, we compute the average distance (AD) be-
tween any pair of places in the slum over the road network.

• We define the construction cost of each road segment as its length,
and calculate the sum of costs (SC) of all planned roads.

It is worth noting that all the metrics are the lower the better.

Model Implementation. We implement the proposed model with
PyTorch [42], and all the codes and data to reproduce the results in
this paper are released at https://github.com/tsinghua-fib-lab/road-
planning-for-slums. We implement the greedy and GA baselines
and integrate them into our framework. For the heuristic search
baseline, we use the codes released in [9]. We carefully tune the
hyper-parameters of our model, including learning rate, regu lar-
ization, etc. For each road planning task, we collect millions of
samples and train our model on a single server with an Nvidia
GeForce 2080Ti GPU, which usually takes about 2 hours. A full list
of hyper-parameters is provided in Section C of the appendix.

4.2 Performance Comparison
We set the planning budget (episode length) as 50% of the number
of candidate segments. Results of our model and baselines are illus-
trated in Table 3, where we also include a reference model (Build
All Roads) that sets 100% of candidate segments as roads. NR is not
applicable to GA-S since it is not a generative method. From the
results, we have the following observations,
• Random and greedy algorithms are ineffective for road
planning. Randomly choosing locations fails to achieve univer-
sal connectivity in all slums except for the smallest one. Greedy-C

achieves the lowest construction cost for all four slums, while it
fails to achieve universal connectivity in the two largest slums.
Adding action masks can help these methods to achieve univer-
sal connectivity, however, the travel distance is still the worst.
Similarly, Greedy-A is the earliest to achieve universal connec-
tivity, however, the construction cost is the worst, and the travel
distance is also much worse than other methods. Thus we do not
consider these trivial methods in the following comparisons.

• Generative models are not suitable to road planning for
slums. To obtain road plans for slums with the two generative
models [14, 28], much of the work has to be conducted manually
by human labor, which betrayed our original intention to auto-
mate the process of road planning. Not surprisingly, since they
are not suitable to the sequential decision-making task, the per-
formance of GAN and VAE falls far behind our proposed method
and the HS-MC baseline.

• DRL-basedmethods have significant advantages over other
approaches. DRL-MLP and DRL-GNN outperform GA-G, GA-S,
and HS-MC on all metrics. The two DRL-based methods achieve
much better road planning performance, with average reductions
of about 23.2%, 10.7%, and 9.0% in NR, AD, and SC over the four
slums. Baselines like GA and HS-MC fail to explore the solution
space efficiently, making it difficult to obtain high-quality road
plans. The performance gap verifies the strong ability of DRL to
optimize multiple objectives in a large action space.

• Our proposed model achieves the best performance. Re-
garding accessibility, our model is the fastest to achieve universal
connectivity for all slums, which is critical under tight planning
budgets. Compared with HS-MC, our model connects all places
with 3 fewer road segments (NR) for slums in Harare and Cape
Town, and 14 fewer road segments in the largest slum in Mumbai,
IND. Meanwhile, with respect to travel distance and construc-
tion cost, our model consistently outperforms baseline methods.
Specifically, our method reduces AD by 19.4% and 14.7% for slums
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(a) GA-G (b) HS-MC (c) DRL-GNN

Figure 6: The generated road plans for the slum inCape Town,
ZAF, and their corresponding travel distance matrices of (a)
GA (b) HS-MC (c) DRL-GNN. Best viewed in color.
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Figure 7: Performance of DRL-GNN and its variants that
remove different features, including Centrality (F1), Road
(F2) and Straightness (F3) for slums in (a) Harare, ZWE (b)
Cape Town, ZAF. Best viewed in color.

in Harare and Cape Town, respectively, and reduces SC by 11.1%
for slums in Cape Town. In particular, the road plan obtained by
our method achieves a travel distance very close to that of Build
All Roads at a much lower cost, making it more economical in
real slum upgrading. Our model can capture topological informa-
tion through the generic graph model and the novel GNN, and
perform efficient searches in the large action space via masked
policy optimization. These special designs enable our model to
achieve superior performance in road planning for slums.

Figure 6 demonstrates the generated road plans of different mod-
els for the slum in Cape Town, ZAF, and their corresponding travel
distance matrices. Although universal connectivity is achieved in all
plans, the travel distance varies significantly across different meth-
ods. In the road plans of baselines, slum dwellers in some places
have to travel a long detour to reach each other, which corresponds
to several hot regions in the travel distance matrices as shown in
Figure 6(a-b). In contrast, our method utilizes the progress in travel
distance as the reward and optimizes it in stage II. Specifically, the
proposed GNN model can detect places that suffer from long de-
tours through topology-aware message passing on the graph, and
add targeted roads to reduce travel distance effectively. Thus there
are much fewer hot regions as shown in Figure 6(c). In addition, as
demonstrated in Figure 6, our model is able to grow a road network
in a less costly way, with the total length of planned roads much
shorter than baselines by about 10%.
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Figure 8: Performance of DRL-GNN and its variants that
remove node2edge propagation (N2E), edge self-propagation
(E2E) and face2edge propagation (F2E) for slums in (a) Harare,
ZWE (b) Cape Town, ZAF. Best viewed in color.

4.3 Ablation Study
Graph Modeling. The spatial topological relationships between
places and roads in a slum are crucial for road planning. The pro-
posed graph modeling and GNN can capture such topological re-
lationships, enabling decent location selection policies. Table 3
illustrates the performance of our method with and without graph
modeling, i.e., DRL-GNN and DRL-MLP. Specifically, it is easier for
our graph model to perceive the currently disconnected regions,
and layout corresponding road segments to connect them, leading
to earlier universal connectivity in all 4 slums. The graph model
can also capture the neighborhood information on travel distance
and construction costs, leading to a more economical policy to re-
duce travel distance. As shown in Table 3, DRL-GNN outperforms
DRL-MLP in AD and SC for 4 and 3 slums, respectively.
Topological Features. We investigate the role that the designed
features for nodes, edges, and faces play in our model. We first
obtain a well-trained model, then remove different features, i.e.,
setting the feature values as 0, and evaluate its performance. Fig-
ure 7 demonstrate the performance of removing three features (F1:
Centrality, F2: Road, F3: Straightness) compared with using all fea-
tures. We can observe that feature Straightness brings the largest
performance deterioration in travel distance, with 22.0% and 49.0%
increases in Harare and Cape Town, respectively. This result is
reasonable since Straightness is the ratio of road network distance
to the Euclidean distance, which directly indicates long detours in
the slum, thus this feature is critical to travel distance. In addition,
feature Road also plays an important role, and removing it leads to
a 20.2% and 13.0% increase in construction cost for the two slums,
respectively. Our designed rich features describe the topological
information of the slum, which is critical when selecting locations
for new road segments.
Topology-aware Message Passing. In the proposed GNN model,
we design various propagation messages to edges from different
sources, including nodes, faces, and edges themselves. In this sec-
tion, we study the effect of different propagation messages. Specifi-
cally, we design multiple variants of our GNN model, each of which
blocks one single propagation message. We train these models and
evaluate their road planning performance, as shown in Figure 8.
We can find that deleting any propagation flow leads to the loss of
topological information, and brings about a deterioration in perfor-
mance. Specifically, deleting Node2Edge propagation makes travel
distance worse by 10.2% in Harare and construction cost worse
by 8.1% in Cape Town; deleting Edge Self-propagation increases

5702



Road Planning for Slums via Deep Reinforcement Learning KDD ’23, August 6–10, 2023, Long Beach, CA, USA

construction cost by 14.8% in Cape Town; and deleting Face2Edge
propagation leads to a 3.0% increase in travel distance in Harare.
The above results confirm the necessity of topology-aware message
passing, which gathers diverse topological information to edges
and makes our edge-centric GNN learn meaningful edge represen-
tations, enabling decent edge selection policies.

4.4 Analysis on Transferability
It is beneficial for a road planning model to generalize across dif-
ferent scenarios. On the one hand, the planning budgets may vary.
We set the budget as 50% of candidate segments for training, and
directly evaluate our model under different budgets. Figure 9(a)
shows that DRL-GNN outperforms HS-MC under all different bud-
gets, with more significant improvements under tight budgets, e.g.,
10.3% travel distance reduction under 30% budgets, two times larger
than 70% budgets. On the other hand, we study the transferability
across different slums. We obtain a pretrained model on a small
slum (Harare, ZWE), and finetune it on a large slum (Cape Town,
ZAF).We compare the pretrained model with a model that is trained
from scratch. Figure 9(b) demonstrates the travel distance at each
step for the large slum, where the pretrained model is consistently
better than the model trained from scratch in stage II. The above re-
sults verify that our model can learn universal road planning skills
and successfully transfer them to scenarios of different budgets or
different slums, which is crucial for practical slum upgrading.

5 RELATEDWORK
Deep Reinforcement Learning for Planning.With the develop-
ment of deep learning [32], utilizing deep neural networks (DNN)
to achieve function approximation in reinforcement learning be-
comes the new state-of-the-art. Since the proposal of DQN [39, 40],
DRL methods have achieved great success in complex planning
tasks, such as the game of Go [47, 48], chemical synthesis [46],
chip design [3, 36, 44], VRP [12, 41, 65], and solving mathematical
problems [16]. Planning tasks usually have a huge action space,
which can be effectively reduced by predicting rewards with a value
network and sampling actions via a policy network [23, 30, 38, 47].
Recently, several works [13, 33, 35, 58] adopt GNN as policy and
value networks to solve planning tasks on the graph [13, 35]. For ex-
ample, Fan et al. [13] combine GNN with DQN to detect key nodes
in complex networks. Meirom et al. [35] utilize GNN as a state
encoder for DRL to solve the tasks of epidemic control and targeted
marketing. In addition, GNN is leveraged to learn representations
for urban regions and road networks [11, 25, 26, 34, 56, 61, 62, 64],
and support downstream tasks like homogeneity analysis [62] and
traffic prediction [11, 61]. However, they only study tasks on exist-
ing built roads, which is quite different from the task of planning
new roads. Meanwhile, there have been some works utilizing DRL
or generative models to accomplish city configuration and urban
planning [14, 21, 28, 51–55], but they ignore the slums in cities
which is an important issue regarding billions of population. In
this work, we make the first attempt to plan new roads for slum
upgrading with DRL and GNN.
RoadPlanning for Slums.Given the large number of slum dwellers
and the economic costs, upgrading slums in situ has become the
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Figure 9: (a) The travel distance of HSMC and DRL-GNN
under different planning budgets. (b) The travel distance at
each step of our DRL-GNN model. Best viewed in color.

primary strategy of urbanization, rather than relocating the popu-
lation to cities. One primary goal of slum upgrading is to provide
service access to every place in a slum by building more roads.
The re-blocking method [8, 24, 37, 37, 43, 59] is widely adopted in
practice, which reconfigures the space and adds road segments, to
make each place connected to the road system. With more streets
constructed, re-blocking has been shown to significantly reduce
the cost of service provision for slums [1, 17]. However, it is not
a computational method and requires negotiation with multiple
stakeholders, so it is slow and case-by-case. A recent paper by Brels-
ford et al [9] formulated road planning for slums as a constrained
optimization problem, making it computationally solvable. Specifi-
cally, they proposed a heuristic search approach, adding one path
at a time to the least connected place, with the help of Monte Carlo
sampling. Considering the huge solution space of this problem, it is
difficult for heuristic methods to achieve optimal road planning per-
formance. Different from heuristic search, in this work, we leverage
the powerful DRL algorithm to search for optimal road plans in a
data-driven way, improving accessibility at minimal costs.

6 CONCLUSION
In this paper, we investigate the problem of road planning for slums,
a critical but little-studied issue in sustainable urban development.
We formulate it as a sequential decision-making problem with a
generic graph model, and propose a novel graph neural network to
select locations for new road segments. The model is optimized to
improve accessibility and reduce the travel distance of slum dwellers
at minimal construction costs. We demonstrate that planning roads
for slums through deep reinforcement learning is viable, effective,
and can be migrated to real-world, large-scale scenarios. As for
future work, we plan to develop a pre-trained model on a large
amount of slum data to enable fast inference of road plans, which
is beneficial for practical deployment.
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APPENDIX
A RESEARCH METHODS
A.1 Markov Decision Process
We propose a DRL model to solve the sequential decision-making
problem, where an intelligent agent learns to automatically select
locations for road segments by interacting with a slum planning
environment, as shown in Figure 2. From the perspective of DRL,
the problem can be expressed as a Markov Decision Process (MDP),
which contains the following critical components:

• States describe the current conditions of the slum, including
both static and dynamic features for places and roads.

• Actions indicate the selected locations of new road segments.
• Rewards provide feedback for road planning actions, which
consider the connectivity, travel distance, and construction cost
to obtain a comprehensive evaluation.

• Transitions express the dynamic changes of the slum, such
as the changes of segments from candidates to roads, and the
resulting changes in accessibility and travel distance.

A.2 Definitions of Topological Features
We design rich features for topological elements on the graph,
including nodes, edges and faces. These features are used as input
of the proposed GNN model to learn representations. We include
11 categories of features as illustrated in Table 1. We now introduce
the specific definitions of these features.
Node Features. Nodes represent junctions in a slum, i.e. points in
the original geometric space. We include the following features,

• Coordinates: the Cartesian coordinates (𝑥,𝑦) indicating the
location of the junction in the slum.

• Centrality: the network centrality metrics of the junction. We
compute four centrality metrics including degree centrality, be-
tweenness centrality [18], eigenvector centrality [7] and close-
ness centrality [19].

• On Road: a boolean feature indicating whether the junction is
on a road, either external or planned.

• Road Ratio: the ratio of the number of adjacent road edges to
the total number of adjacent edges. It is 0 when On Road is False.

• Avg N2N Dis: the average distance from the node to all other
nodes over the constructed road network. It is set as a very large
value if the node is not on a road.

Edge Features. Edges represent paths in a slum, i.e. line segments
in the original geometric space. We include the following features,

• Cost: the construction cost of building the segment as a road,
which is set as the length of the path.

• Road: a boolean feature indicating whether the path is a road or
not. A road can be an existing one or a newly planned one.

• Straightness: the ratio of the road network distance to the eu-
clidean distance between the two endpoints.

Face Features. Faces represent places in a slum, which are polygons
in the original geometric space. We include the following features,

• Connected: a boolean feature indicating whether the place is
connected to the road system.

(a) Harare, ZWE (b) Cape Town, ZAF

External 
Boundary

Disconnected 
Places

Candidate
Segments

(c) Cape Town, ZAF (d) Mumbai, IND
Figure 10: Geometrical descriptions of the adopted four slums
in (a) Harare, ZWE (b) Cape Town, ZAF (c) Cape Town, ZAF (d)
Mumbai, IND. All slums suffer from poor accessibility, with
a large fraction of places disconnected to the road system.
Best viewed in color.

Table 4: Designed features for topological elements.

Category Hyper-parameter Value

Network

GNN layer 2
GNN node dimension 16
Policy Head MLP𝑝 [32, 1]
Value Head MLP𝑣 [32, 32, 1]

PPO

gamma 0.995
tau 0

Entropy Loss 𝛽 0.01
Value Loss 𝛾 0.5

Train
optimizer Adam

weight decay 0
learning rate 0.0004

• Avg F2F Dis: the average distance from the place to all other
places over the constructed road network. It is set as a very large
value if the face is not connected to the road system.

• F2E Dis: the distance from the place to the external boundaries
𝐸 of the slum.

B DETAILS OF SLUM DATA
As shown in Table 2, we conduct experiments on four real-world
slums from three different countries, including Zimbabwe (ZWE),
South Africa (ZAF) and India (IND). The specific locations of the
four slums are Epworth (Harare, ZWE), Khayelitsha (Cape Town,
ZAF) and Phule Nagar (Mumbai, IND). The digital maps and the
geometrical descriptions of places and roads for the four slums are
publicly released by [9], as shown in Figure 10.

C HYPER-PARAMETERS OF OUR MODEL
We implement the proposed model with PyTorch [42], and release
the codes at at https://github.com/tsinghua-fib-lab/road-planning-
for-slums. We tune the hyper-parameters of our model carefully
and list the adopted values in Table 4.
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