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Abstract

Training reinforcement learning (RL) agents re-
quires extensive trials and errors, which becomes
prohibitively time-consuming in systems with
costly reward evaluations. To address this chal-
lenge, we propose adaptive reward modeling
(AdaReMo) which accelerates RL training by de-
composing the complicated reward function into
multiple localized fast reward models approximat-
ing direct reward evaluation with neural networks.
These models dynamically adapt to the agent’s
evolving policy by fitting the currently explored
subspace with the latest trajectories, ensuring ac-
curate reward estimation throughout the entire
training process while significantly reducing com-
putational overhead. We empirically show that
AdaReMo not only achieves over 1,000× speedup
but also improves the performance by 14.6% over
state-of-the-art approaches across three expensive-
to-evaluate systems–molecular generation, epi-
demic control, and spatial planning.

1. Introduction
Reinforcement learning (RL) has achieved remarkable suc-
cess and emerged as the go-to approach for addressing a
wide range of tasks (Lowe et al., 2017; Chen et al., 2021;
Haarnoja et al., 2018; Farebrother et al., 2024). The key to
effective RL is a well-defined reward function guiding the
agent to update its policy as it navigates the vast solution
space (Silver et al., 2021; Levine et al., 2020; Lowrey et al.,
2019; Kidambi et al., 2020; Wan et al., 2021). However,
despite tasks with immediate and straightforward feedback
such as gaming (Mnih et al., 2013; 2015; Vinyals et al.,
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Figure 1. (a) The out-of-sync RL loop for expensive-to-evaluate
systems. (b) Our AdaReMo approach adaptively decouples the
loop into separate online and offline systems.

2019), many real-world tasks involve rewards that are com-
putationally expensive to evaluate (Zhang et al., 2019; Yuan
et al., 2023; Yang et al., 2021), creating a loop of fast deci-
sion and slow evaluation (Figure 1(a)). For instance, in drug
design, reward calculation requires intensive computation of
molecular dynamics to determine the absolute binding free
energy between a generated molecule and the target (Yang
et al., 2021; Lutz et al., 2023), a process that often takes
seconds—orders of magnitude slower than the millisecond-
scale generation process. Such expensive-to-evaluate reward
functions create a significant efficiency bottleneck, render-
ing RL training highly impractical or even infeasible, given
the millions of interactions required with the environment.

To mitigate the computational burden of costly reward func-
tions, model-free reinforcement learning (MFRL) often em-
ploys proxy reward (Eckmann et al., 2022) or reduced-scale
evaluation (Meirom et al., 2021). Nevertheless, these ap-
proaches typically oversimplify the evaluation, introducing
substantial errors into policy optimization and ultimately
resulting in suboptimal solutions (Liu et al., 2021). In con-
trast, model-based reinforcement learning (MBRL) utilizes
a world model to approximate the dynamics of the envi-
ronment, including its reward function (Moerland et al.,
2023; Silver et al., 2016; Ha & Schmidhuber, 2018; Lowrey
et al., 2019; Wan et al., 2021). Though sidestepping time-
consuming reward computation, this approach requires a
large amount of high-quality data to train the world model,
such as expert demonstrations, which are often sparse in
real-world scenarios (Hansen et al., 2023). More impor-
tantly, the reward function is notoriously complicated and
exhibits drastic local variations depending on the agent’s ex-
ploration trajectory. Fixed world models struggle to capture
these complexities and keep pace with the agent’s progress,
leading to increasing prediction errors and degraded pol-

1



Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

icy performance as training proceeds (Janner et al., 2019).
The computational and modeling challenges significantly
hinders the large-scale application of RL in the real world.

In this paper, we propose a general RL approach to decouple
the out-of-sync loop of fast decision and slow evaluation
into separate online and offline systems. The agent makes
rapid decisions in the online system, while the expensive-to-
evaluate reward function is offloaded to the offline system
(Figure 1(b)). Specifically, we design a neural network-
based reward model (RM) to accurately and quickly approx-
imate reward computation, enabling fast interactions with
the agent. To address the complexity of the reward func-
tion, we introduce adaptive reward modeling (AdaReMo)
which approximates rewards only within the agent’s cur-
rently explored subspace, decomposing the complicated
reward function into multiple tractable localized functions.
AdaReMo continuously updates the RM using offline data
to align with the agent’s progress, ensuring low prediction
errors and preventing outdated evaluations throughout the
training process. With RM synchronizing fast decision and
slow evaluation, our approach seamlessly integrates these
two systems operating on different timescales, delivering
efficient and accurate RL for expensive-to-evaluate systems.

To validate the effectiveness of AdaReMo, we conduct ex-
tensive experiments across three challenging real-world
scenarios—molecular generation, epidemic control, and spa-
tial planning. All these tasks involve expensive-to-evaluate
reward functions, typically requiring 1 to 15 seconds per
sample, resulting in prohibitively long training times for
convergence with traditional methods. Results show that
AdaReMo not only achieves state-of-the-art performance
with over 14.6% improvements over existing approaches,
but more importantly, it enables highly efficient RL training,
delivering a remarkable speedup of over 1,000 times.

The contributions of this paper are summarized as follows,

• We investigate the critical challenge of synchronizing fast
decision with slow evaluation, addressing the efficiency
bottleneck in RL for expensive-to-evaluate systems.

• We propose adaptive reward modeling which decomposes
the complicated and costly reward function into easy-to-
capture reward models aligning with the agent’s progress,
ensuring zero-delay RL training and reliable convergence
of decision policies.

• We conduct extensive experiments across three real-world
expensive-to-evaluate systems, demonstrating the substan-
tial efficiency advantages and superior decision perfor-
mance of our approach.

2. Related Work
Decision-making under expensive objectives. Traditional
approaches often rely on heuristic methods or simplified
models to reduce computational overhead, yet they sacri-
fice accuracy and fail to make optimal decisions (Eckmann
et al., 2022; Jeon & Kim, 2020). Recent studies have ex-
plored the use of surrogate models (Wu et al., 2023; Wang
& Van Hoof, 2022) and approximation techniques (Elsayed
et al., 2024; Shetty et al., 2024) to replace reward computa-
tion while maintaining performance. For instance, bayesian
optimization (Balakrishnan et al., 2020; Astudillo & Frazier,
2021) and gaussian processes (Lin et al., 2023; Achituve
et al., 2021) have been utilized to efficiently navigate high-
dimensional search spaces. Additionally, advancements in
parallel computing and distributed systems have scaled up
these tasks across multiple processors or GPUs, significantly
reducing computation time (Lu et al., 2022).

Model-based Reinforcement Learning. Recently, MBRL
has shown promise in improving sample efficiency by learn-
ing a model of the environment’s dynamics (Yu et al., 2021a;
Janner et al., 2019). Early approaches focused on learning
explicit models of state transitions and rewards, facilitating
planning and policy optimization without direct interactions
with the environment (Silver et al., 2016; Ha & Schmid-
huber, 2018; Hafner et al., 2019). Recent advancements
have extended MBRL to address real-world complexities,
such as high-dimensional state spaces and complex dynam-
ics, through techniques like ensemble methods (Moerland
et al., 2023; Wang et al., 2024), uncertainty estimation (Yu
et al., 2020; Xu & Liu, 2023), and offline reinforcement
learning (Levine et al., 2020; Luo et al., 2023). However,
despite these advancements, their limited ability to consis-
tently provide accurate estimates restricts their application
to real-world challenging tasks.

3. Preliminary
We consider decision-making problems formulated as
Markov Decision Processes (MDP) with state space S,
action space A, transition probabilities P and rewards
R : S × A after taking an action in a specific state. The
agent learns a policy πΘ parameterized by Θ, which outputs
an action a = πΘ(s) and receives a reward r(s, a) from the
environment. The objective is to maximize the expected
return over the entire decision process, formulated as:

max
Θ

T∑
t=0

γtr(st, at), (1)

where T denotes the time horizon or termination condition
and γ is the the discount factor. Notably, we focus on
expensive-to-evaluate systems where calculating the reward
r(s, a) is time-consuming, rendering trivial RL impractical.
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Figure 2. The overall framework of AdaReMo, where green and
red lines represent fast and slow processes respectively. (Top) In
online decision system, the agent updates its policy with real-time
feedback from the RM. (Bottom) In offline evaluation system, the
RM is continuously finetuned using direct evaluation on the latest
exploratory samples of the agent stored in a memory pool.

4. Method
Our method, adaptive reward modeling (AdaReMo) ad-
dresses the efficiency bottleneck by (1) disentangling fast
and slow processes into two separate systems, (2) synchro-
nizing these systems through a neural network-based reward
model (RM) dynamically adapting to the agent’s progress.

As illustrated in Figure 2, we begin by offloading heavy
reward computations into an offline system, and keep the
agent in an online system updating its policy in real-time
with the fast RM. We then bridge the speed gap via adaptive
updates to the RM using offline data collected by direct
reward evaluation, aligning the RM with the agent to ensure
accurate reward estimation throughout the entire training
process while introducing no computational overhead. Fi-
nally, we design synchronous correction, parallel evaluation,
and model warm-up to further enhance training efficiency.

4.1. Online RL Agent

We develop the RL agent based on graph neural networks
(GNN) (Kipf & Welling, 2017) since the graph data struc-
ture applies to many real-world tasks, particularly for the
three tested scenarios in this work. It is worthwhile to notice
that our approach is model-agnostic and can be integrated
with other deep learning architectures such as convolutional
neural networks (Krizhevsky et al., 2012) and transform-
ers (Vaswani, 2017), which we leave for future work.

We first employ a GNN encoder to transform state obser-
vations into dense node and edge embeddings (the graph
is defined according to the specific task, see experiments),

which are calculated as follows:

n0
i = W0

nAni , (2)

nl+1
i = nl

i + tanh (
∑

eij∈E

Wl+1
n nl

j), (3)

where Ani
denotes input attributes for nodes, Wn is learn-

able parameters, l denotes GNN layers with a maximum
of L, eij represents edges, and ni is node embedding, re-
spectively. The agent then scores each action using these
representations with a multi-layer perceptron (MLP), and
selects actions based on the probability distribution deter-
mined by their scores as follows,

si = MLPp(ei), pi = esi/
∑
j

esj , (4)

where si and pi are the score and probability of taking action
on node i.

The agent interacts within the fast online system to collect
millions of trajectories for RL training. We optimize its
policy πΘ with PPO (Schulman et al., 2017) in an actor-
critic fashion, updating its parameters as follows:

∇ΘJ(Θ) = E[∇Θ log πΘÂ
π(s, a)], (5)

Θ← Θ+ γl∇ΘJ(Θ), (6)

where Âπ(s, a) is the advantage of the state-action pair
(s, a) and γl is the learning rate.

4.2. Reward Model

Feeding the direct evaluations back to the agent as rewards
for policy optimization is impractical or even infeasible
due to the significant computational demands of sophisti-
cated reward functions in expensive-to-evaluate systems. To
address this challenge, neural networks offer a promising
solution for accelerating evaluation with their robust fitting
capabilities and rapid inference speed. Inspired by RLHF
(reinforcement learning from human feedback) in finetuning
large language model (Touvron et al., 2023), we develop a
reward model (RM) for rapid reward estimations. RM re-
places intensive computations of the evaluation with a deep
neural network to estimate the reward for each state-action
pair. We employ another MLP with parameters Φ for the
RM which shares the same GNN encoder with the agent to
significantly reduce training parameters. The RM estimates
reward as follows,

hs =
1

|V |
∑
i∈V

nL
i , r̂(s, a) = MLPΦ(hs ∥a), (7)

where V denotes the set of nodes, hs is the average node
representation summarizing the current state, and r̂(s, a) is
the estimated reward. The RM is able to provide immediate
feedback to the agent, facilitating policy optimization within
the online system in real-time.
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Figure 3. The scheme of AdaReMo with asynchronous training
framework. Multiple reward calculator constantly evaluate the
solution generated by progressively optimized decision policy and
for RM fine-tuning. After T policy optimization iterations, RM is
fine-tuned to adapt to new decision policy.

4.3. Adaptive Reward Modeling

While we introduce RM to accelerate RL training, ensuring
its accuracy is crucial and requires careful examination. On
the one hand, a neural network-based RM may struggle to
completely capture the intricacies of the underlying laws
of the sophisticated reward function, leading to reward es-
timates that not always align with direct evaluations. On
the other hand, it is impractical to train RM on every pos-
sible state s ∈ S. Consequently, as training proceeds and
the agent explores previously unseen or uncommon states,
RM may provide erroneous estimates significantly diver-
gent from direct evaluations, which can mislead the agent,
hindering its ability to learn the optimal decision policy.

Though RM may not fully capture the complicated reward
function, it still has the ability to accurately predict the re-
ward within a reduced and localized state subspace. To
ensure accurate reward approximation throughout the en-
tire training process, we propose adaptive reward model-
ing (AdaReMo) with an asynchronous training framework
which updates RM concurrently according to the agent’s
progress on its policy. The main idea of AdaReMo is to
align the definitional domain of RM with the currently ex-
plored state subspace by the agent as closely as possible
through periodic finetuning. In other words, we decompose
the full state space S into multiple subspaces {S1,S2, . . . , }
and fintune the RM using samples within each subspace,
thus obtaining {RM1, RM2, . . .} accordingly.

As illustrated in Figure 3, a fixed-size memory pool is lever-
aged to store the recent exploratory samples following the
first-in-first-out principle, where state-action pairs are sam-
pled to perform direct evaluation for accurate reward r(s, a),
which will be added to a fine-tune pool F . As policy op-
timization iterates, F is filled with sufficient samples and

Algorithm 1 Training Process of Online and Offline System
Online Decision System:
Input: episodelen, policy πΘ, reward model Rϕ, transi-
tion function T , memory pool M
for episode = 1 to episodelen do

for t = 1 to T do
at = πΘ(st), r̂t = Rϕ(st, at), st+1 = T (st, at)
M .push((st, at, r̂t))

end for
Gt =

∑T
k=t γ

k−tr̂k, Ât = Gt − VΘ(st)

Θ← Θ+ αÂt∇Θ log πΘ(st, at)
end for

Offline Evaluation System:
Input: memory pool M , fine-tune pool F , reward calcu-
lator C
repeat

M .pop((st, at, r̂t)), rt = C(st, at)
F .push((st, at, r̂t, rt))

until M is None

Adaptive Reward Modeling:
Input: fine-tune pool F , reward model R, fine-tune inter-
val, fine-tune epoch
while iter % fine-tune interval == 0 do

for epoch = 1 to fine-tune epoch do
F .randpop((st, at, r̂t, rt))
L =

∑
(r̂t − rt)

2

ϕ← ϕ+∇ϕL
end for

end while

RM is fine-tuned by the MSE loss as follows,

L =
∑

(s,a)∈F

(r̂(s, a)− r(s, a))2. (8)

Algorithm 1 shows the training process of our online and
offline system with AdaReMo. It is worth noting that the
PPO algorithm (Schulman et al., 2017) constrains the magni-
tude of policy updates to enhance the stability of the agent’s
learning process. Therefore, each subspace Si is compact
enough for a neural network RMi to accurately approximate,
thus guaranteeing consistently low error in reward estima-
tion and aliging RM with the agent throughout the whole
process which we empirically show in experiments.

4.4. Training Acceleration

With AdaReMo integrating the decision and evaluation sys-
tems operation on different timescales, we introduce syn-
chronous correction and model warm-up to enhance the
robustness of reward estimation, as well as parallel compu-
tation to further improve the training efficiency.
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Table 1. Performance comparison on molecular generation with respect to Top 5% Score (T5) and Hit Ratio (HR).

Method FA7 PARP1 5HT1B
T5↑ HR↑ T5↑ HR↑ T5↑ HR↑

HierVAE 9.4± 0.1 0.06± 0.01 12.2± 0.1 0.25± 0.01 11.9± 0.1 0.12± 0.01
LIMO 9.8± 0.7 0.11± 0.02 11.9± 1.0 0.18± 0.04 10.3± 0.8 0.20± 0.04

MolDQN 8.2± 0.3 0.02± 0.01 10.5± 0.2 0.04± 0.02 9.8± 0.1 0.11± 0.01
FREED 10.3± 0.5 0.25± 0.05 12.8± 0.3 0.35± 0.09 12.2± 0.2 0.41± 0.10
MBPO 9.7± 1.1 0.18± 0.07 11.6± 0.9 0.26± 0.08 12.3± 0.5 0.35± 0.08
Ours 10.5± 0.6 0.31± 0.06 13.1± 0.4 0.42± 0.05 12.7± 0.4 0.48± 0.09

impr% +1.9% +19.4% +1.6% +20.0% +3.2% +17.1%

Synchronous Correction. As RM is updated periodically
during policy optimization, there can be samples that reside
outside the subspace Si which become outliers to the defini-
tion domain of RMi, leading to errors in reward estimation.
To mitigate the impact of such outliers, we introduce a syn-
chronous correction mechanism as follow:

r̃(s, a) = αr̂(s, a) + (1− α)rc(s, a), (9)

where rc(s, a) represents the correction term and α is a
trade-off parameter. The correction term is obtained from
simplified or reduce-scaled direct evaluations, allowing for
reward rectification without slowing down the training.

Model Warm-up. RM’s parameters are randomly initial-
ized thus cannot offer reliable reward estimates at the be-
ginning, which can introduce significant noise into or even
disrupt policy optimization. Therefore, it is crucial to pre-
train the RM before updating the agent’s policy. In our
implementation, we delay policy optimization until the RM
has undergone several fine-tuning intervals, ensuring that
the agent consistently receives feedback from a warmed-
up RM. While the RM warm-up consumes additional time
from the start, it substantially enhances subsequent training
efficiency and accelerates model convergence.

Parallel Computation. Increasing the number of samples
in the fine-tuning pool F can improve the approximation
performance of the RM, as deep learning often benefits
from more training data. Therefore, we employ parallel
computation to significantly augment the dataset during fine-
tuning intervals. Specifically, we implement simultaneous
calculation of K reward calculators using multi-threaded
programming, and the hyper-parameter K is determined
by computational resources. Each calculator pulls the lat-
est solution from the memory pool, completes its reward
evaluation, and then initiates another round of calculation.

5. Experiments
We investigate three challenging tasks with expensive-to-
evaluate reward functions: molecular generation, pandemic
control, and urban spatial planning, as shown in Figure 4.

(a) (b) (c)

...

...

Figure 4. Three experimental decision-making tasks, (a) molecular
generation, (b) pandemic control and (c) urban spatial planning.

Table 2. Comparison of time spent on evaluating molecular gener-
ation (MG), pandemic control (PC) and spatial planning (USP).

Scenario MG PC USP

Simplified 0.03s 0.12s 0.01s
Precise 8.6s 15.2s 10.5s

Additionally, we record the time spent on the corresponding
evaluations in Table 2.

5.1. Molecular Generation

Molecular generation aims to identify novel molecules that
bind most effectively to protein targets, where RL has be-
come a promising method due to its ability in searching a
vast solution space (Yang et al., 2021; Lutz et al., 2023).
A molecule can be represented as a graph G = (V,E),
where atoms are nodes and bonds are edges. The gener-
ation process is equivalent to graph expansion, where the
agent’s action corresponds to adding a new fragment (a
set of nodes) connected by a bond (edge) to the existing
molecular structure at a specified attachment site.

Evaluating the quality of the molecule presents significant
challenges. The molecular docking program is widely used
to provide precise measurements of the therapeutic potential
of molecules. Through computationally expensive molec-
ular dynamics-based simulations, the program calculates
accurate binding free energy to identify hit compounds.
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Table 3. Pandemic control performance measured by Healthy (H)
and Contained (C).

Method CA-GrQc SNAP
H↑ C↑ H↑ C↑

HSB 31.7±1.8 8.8±0.2 22.3±1.1 3.0±0.3

KDE 30.2±2.2 8.7±0.7 22.1±2.4 2.3±0.4

GBP 32.9±0.5 9.1±0.3 23.8±0.4 3.1±0.1

RLGN 36.7±5.2 9.9±2.4 25.6±3.1 3.4±1.1

MBPO 27.2±6.6 7.3±3.5 15.4±6.0 1.3±0.6

Ours 39.4±5.7 10.6±2.9 28.2±4.8 3.8±0.9

impr% +7.4% +7.2% +10.2% +11.5%

Here, we employ AutoDock Vina (Trott & Olson, 2010;
Eberhardt et al., 2021), a docking engine with outstanding
accuracy and speed, to evaluate the effectiveness of the gen-
erated molecules in targeting proteins, as the reward in the
MDP. To compare the performance of each approach, we
investigate the average score of the top 5%-scored generated
molecules, and hit ratio which is the proportion of docking
scores exceeding reference thresholds. Notably, the molec-
ular docking program requires several seconds to obtain
precise results for a single sample, which is unaffordable
for traditional RL methods.

We experiment on three protein targets, FA7, PARP1,
and 5HT1B, which are commonly studied in medical re-
search (Yang et al., 2021; Nautiyal et al., 2015). We com-
pare our method with state-of-the-art molecular generation
baselines, which are (1) non-RL algorithms including Hi-
erVAE (Jin et al., 2020) and LIMO (Eckmann et al., 2022),
(2) MFRL-based methods including MolDQN (Zhou et al.,
2019) and FREED (Yang et al., 2021), (3) MBRL-based
algorithm MBPO (Janner et al., 2019). For each metric, we
repeat experiments with three different random seeds and
records the mean and the standard deviation.

Table 1 illustrates the performance of different approaches,
which confirm the necessity of precise evaluation. Specifi-
cally, using the simplified evaluation, MolDQN consistently
generates molecular with poor binding quality, showing an
sharp performance decline of 21.9% and 93.5% in Top 5%
Score and Hit Ratio, respectively. In contrast, benefit from
the dynamic-based precise evaluation, our approach and
FREED always achieve the optimal and suboptimal perfor-
mance, with an average improvement of 13.2% and 10.9%
over other RL methods.

Our method have remarkable advantages over other base-
lines. For all the three different target proteins, our method
demonstrates the best generation quality. Specifically, the
Hit Ratio of our methods improves other MFRL methods by
over 8.3%. Meanwhile, by employing AdaReMo, the agent
is able to capture the localized reward function accurately,
reaching an improvement of 6.3% over MBRL approach.

Table 4. The basic attributes of the real-world communities.

Community Location Area Round Grids

HLG Beijing 3.67km2 7.7km 38
DHM Beijing 3.35km2 8.0km 48
HZ Guangzhou 2.96km2 6.9km 54

5.2. Epidemic Control

Mitigating the impact of a pandemic requires strategic al-
location of limited resources such as quarantine facilities
and vaccine supplies within social networks. The challenge
in epidemic control stems not only from the vast and in-
tricate social networks but also from the difficulty in accu-
rately modeling disease dynamics. Pandemic control can
be conceptualized as sequentially selecting nodes on a so-
cial network G = (V,E) to be temporarily isolated, where
V represents individuals and E denotes their interpersonal
contacts (Meirom et al., 2021).

For accurate evaluation of epidemic control, it is common to
employ susceptible-infectious-recovered (SIR) model (Ker-
mack & McKendrick, 1927) to capture the propagation dy-
namics of pandemic. By predicting the health status of
individuals at each stage of propagation multiple times, SIR
simulation provides a more comprehensive decision assess-
ment. Performance of epidemic control is measured by
Healthy representing the final proportion of healthy individ-
uals, and Contained indicating the proportion of simulations
where Healthy exceeds 60% (Meirom et al., 2021).

We utilize large-scale real-world contact networks CA-
GrQc (Rossi & Ahmed, 2015) and SNAP (Leskovec &
Krevl, 2014), which are extensively studied in epidemio-
logical research, for our experiments. Consistent with prior
studies (Meirom et al., 2021), the agent isolates 2% of the
total population, and we simulates 25 propagation steps
with SIR model using 20 different seeds (3 for synchronous
correction). Additionally, the propagation parameters of the
SIR model are set with an infectious rate β = 0.08 and a
recovery rate γ = 0.2, informed by real-world pandemic
propagation (Yu et al., 2021b). We compare our method
against (1) classic approaches including KED (Tong et al.,
2012), GBP (Kimura et al., 2008) and heuristic search ap-
proaches based on betweenness (HSB), (2) MFRL approach
RLGN (Meirom et al., 2021), and (3) MBRL approach
MBPO (Janner et al., 2019).

Table 3 illustrates the results of our approach and baselines.
First, classic algorithms cannot address complex epidemic
control tasks well. HSB heavily rely on manually designed
rules and often fail to capture the essential characteristics of
epidemics, resulting in poor performance across networks
and metrics. Additionally, KDE and GBP also show notice-
able declines compared to RL approaches. Specifically, the
risk of infection increases by at least 11.7%, while the prob-
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Performance Comparison on Urban Spatial Planning

Figure 5. Urban spatial planning performance measured by Dis-
tance (D, the lower the better) and Greenness (G, the higher the
better).

ability of containing outbreaks decreases by at least 17.2%.
Second, our approach achieves the best performance on
both Healthy and Contained across different social network,
demonstrating its outstanding ability in pandemic control.
Specifically, our generated control strategy prevents 3.3% of
the population from infection and is the only strategy with a
containment ratio higher than 10% among all the methods.
Moreover, our approach improves by 45% over the MBRL
approach due to the adaptability of AdaReMo.

5.3. Urban Spatial Planning

Rationalizing the functional division of limited urban land
presents a significant challenge, requiring consideration not
only of the city’s actual development needs but also of the
functional interconnections between different types of land
uses. The task of community spatial planning can be for-
mulated as sequentially selecting edges on a city graph
G = (V,E), where V represents community lands and road
segments, and E indicates their spatial adjacency (Zheng
et al., 2023).

To incorporate realistic human mobility into community lay-
out evaluation, we utilizes the state-of-the-art urban mobility
simulation method SAND (Yuan et al., 2023) for evaluation.
With thousands of reconstructed daily trajectories of resi-
dents, each layout for community is measured by Distance
and Greenness. Distance indicates the accessibility of the
community layout, quantified by the average daily trajec-
tory length per resident. Greenness signifies the residents’
exposure to green spaces, calculated by the average daily
passes through green areas per resident.

We experiment on three real-world communities in
China (Zheng et al., 2023), initially bordered by main roads
and designated residential areas, with further details pro-
vided in Table 4. The task involves partitioning the original
community layouts to allocate areas for green spaces, busi-
nesses, offices, schools, hospitals, recreation, and residential
purposes and ends when all the requirements are satisfied.
In the implementation, a complete simulation contains the
weekly trajectories of 1,000 virtual residents, while in syn-
chronous correction, we decrease to 100 residents. For the
performance comparison, we include (1) traditional plan-
ning concepts such as centralized (CEN) and decentralized

(a) (b)

Figure 6. (a) Training efficiency comparison of four RL-based
methods in molecular generation. (b) The adaptability of RMs,
where solutions are evaluated at each policy optimization iteration.
Best viewed in color.

(DCEN), (2) genetic algorithm (GA) (Zheng et al., 2023),
(3) MFRL-based method DRL (Zheng et al., 2023) and (4)
MBRL approach MBPO (Janner et al., 2019).

Figure 5 illustrates the results of our approach and baselines.
While MFRL effectively explores the solution space, the
imprecise rewards received by the agent limit the efficacy
of layout planning. By employing a realistic mobility-based
evaluation, our method significantly improves community
layouts, reducing average travel distance from 3.06 to 2.78
(-9.2%) and increasing average green space visits from 1.62
to 1.78 (+9.9%). Additionally, within three RL-based ap-
proaches, MBRL approach consistently produces layouts
with poor accessibility and green space exposure, showing
an average performance decline of 18.8% and 14.2% in Dis-
tance and Greenness, respectively. Notably, although our
method achieves the best planning outcomes overall, MBPO
performs the worst among all baselines, underscoring the
critical role of the AdaReMo.

5.4. Effectiveness and Efficiency of AdaReMo

RM plays a pivotal role as the key bridge between online
policy learning and offline evaluation in our approach. Con-
sidering the varied convergence of DRL-based methods,
reporting only the best solutions cannot provide a clear
picture of how the RM influences training efficiency. To
illustrate the difference between these methods, we present
the evaluation metrics of the generated solutions after the
same policy optimization time in Figure 6(a). While RL
using direct evaluation (FREED) initially shows a slight
advantage, the performance of our approach quickly catches
up and surpasses that of FREED, with an increase of more
than 17.6%. This observation can be attributed to the insuf-
ficient fine-tuning of RM to capture the complex dynamics
of the environment during the early training stages, which
introduces reward estimation errors. Benefiting from ac-
curate evaluations and fast RM estimations, our approach
efficiently optimizes the decision policy and achieves the
fastest convergence to generate quality molecular once the
RM adapts to the agent’s current policy. In contrast, even
after several days of training, the performance of RL with-
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(a) (b)

Figure 7. The visualization of RMs’ estimation errors in (a) molec-
ular generation and (b) pandemic control. The element at (i, j)
represents the error in applying the RM at j iteration to estimate
the solution at i iteration.

out RM improved by only a slight 7.1%, highlighting the
necessity of the RM which sidesteps the heavy computa-
tional burden of reward calculation with fast estimations
using neural networks.

In addition to improving overall training efficiency, the
adaptability of the model to a continuously optimized de-
cision policy is also examined. We randomly select solu-
tions with accurate evaluations from the fine-tuning pool F
during the training process. Fine-tuned RMs are saved at
iterations 100, 300, and 500 (denoted as RM100, RM300,
and RM500, respectively) to estimate molecular properties.
Figure 6(b) presents the evaluations of the molecular along-
side the corresponding RM estimations. Specifically, all
RMs accurately estimate molecular generated around their
respective iterations, with an average relative loss of less
than 0.8% and a relative standard deviation of less than 2.1%.
In contrast, RMs exhibit estimations with a relative loss ex-
ceeding 37.5% and extremely high variance for molecular
outside their trained state subspace.

To further visualize the consistency of between the RM
and the agent, we calculate the errors between RM estima-
tions and precise evaluation during the training process. As
shown in Figure 7, the elements on the diagonal are ap-
proximately 0, indicating that the RM can always adapt to
the current solutions with accurate estimations. When the
iteration differs, the error of estimation rises significantly.
Notably, two areas of high variance can be observed: the
lower right corner and the middle left. The former is due to
the RM’s initial inability to effectively learn the dynamics
of the environment, while the latter indicates a sharp shift
in the distribution of the reward function. These findings
underscore the necessity of AdaReMo and the asynchronous
training framework, ensuring that RM remains aligned with
the decision policy.

5.5. Empirical Analysis of AdaReMo

Choosing the optimal timing for fine-tuning RM is crucial
for enhancing the efficiency of AdaReMo. Here, two critical
hyper-parameters for the asynchronous training framework

(a) (b)

Figure 8. The effectiveness of AdaReMo with different hyper-
parameters. (a) Impact of varying fine-tune intervals on training
efficiency and convergence. (b) Influence of varying fine-tune
epochs on metric performance. Best viewed in color.

are investigated: fine-tune interval and fine-tune epoch.

We first explored different fine-tuning intervals, ranging
from 1 to 9 iterations, and trained the RM accordingly. As
shown in Figure 8(a), a short fine-tuning interval (e.g., 1
iteration) impedes effective RM updates, leading to policy
optimization failure. Specifically, optimization efficiency
drops to less than 75% of default settings, and the conver-
gence fails even after 300 iterations. Conversely, excessive
sampling also hinders agent learning efficiency, resulting in
a 5.7% decrease in performance. With a short fine-tuning
period, the data in the fine-tuning pool F closely track the
exploration subspace but may lack sufficient samples due to
time-consuming evaluation. On the other hand, a longer fine-
tuning interval makes F denser and more efficient for RM
fine-tuning, yet risks lagging RM updates significantly be-
hind policy optimization, leading to misalignment between
the RM and the agent.

Similarly, we varied the number of finetuning epochs to
examine its influence, as depicted in Figure 8(b). Both
excessive and insufficient epochs resulted in significant per-
formance decrease of 7.5% and 15.1%, respectively. Fewer
epochs enable quicker RM feedback to the agent but may
compromise fine-tuning effectiveness. Conversely, more
epochs facilitate thorough RM adaptation but require addi-
tional time and risk overfitting. The optimal solution was
found with 40 fine-tuning epochs, matching the duration of
a single policy iteration and demonstrating efficient time
utilization. Adequate sampling in F during this period en-
sures effective RM fine-tuning, allowing agents to receive
accurate feedback in subsequent iterations with updated RM.
Insufficient time may diminish fine-tuning quality, while
excessive time may force agents to iterate multiple times
with outdated RM, wasting exploration efforts.

6. Conclusion
This work proposes AdaReMo, a general and efficient rein-
forcement learning approach for systems involving costly
reward functions. We introduce a reward model to approx-
imate reward calculation, which disentangles the fast de-
cision and slow evaluation into distinct online and offline
systems, enabling efficient policy training without any de-

8



Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

lays. Meanwhile, the reward model continuously adapts
to the agent’s progress, ensuring accurate reward approxi-
mation throughout the entire training process. AdaReMo
displays competitive performance in molecular generation,
epidemic control, and spatial planning. Looking ahead,
we plan to further explore the universality of our approach
across different deep learning architectures besides GNN,
as well as broader expensive-to-evaluate tasks.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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