ContextEvolve: Multi-Agent Context Compression for Systems Code
Optimization

Hongyuan Su'? Yu Zheng® YongLi'?

Abstract

Large language models are transforming sys-
tems research by automating the discovery of

performance-critical algorithms for computer

systems. Despite plausible codes generated

by LLMs, producing solutions that meet the

stringent correctness and performance require-
ments of systems demands iterative optimization.
Test-time reinforcement learning offers high

search efficiency but requires parameter updates

infeasible under API-only access, while existing

training-free evolutionary methods suffer from

inefficient context utilization and undirected

search. We introduce ContextEvolve, a multi-
agent framework that achieves RL-level search

efficiency under strict parameter-blind constraints

by decomposing optimization context into three

orthogonal dimensions: a Summarizer Agent

condenses semantic state via code-to-language

abstraction, a Navigator Agent distills optimiza-
tion direction from trajectory analysis, and a

Sampler Agent curates experience distribution

through prioritized exemplar retrieval. This

orchestration forms a functional isomorphism

with RL—mapping to state representation,

policy gradient, and experience replay—enabling

principled optimization in a textual latent

space. On the ADRS benchmark, ContextE-
volve outperforms state-of-the-art baselines by

33.3% while reducing token consumption by

29.0%. Codes for our work are released at

https://anonymous.4open.science/r/ContextEvolve-
ACC.

1. Introduction

Systems research has traditionally relied on human experts
to design algorithms that optimize performance under strict

!"Tsinghua University, Beijing, China *Zhongguancun Academy,
Beijing, China *Massachusetts Institute of Technology, Cambridge
MA, USA.

Preprint. January 29, 2026.

constraints (Zoph & Le, 2016; Jiang et al., 2024a). The
emergence of Large Language Models (LLMs) has enabled
Al-Driven Research for Systems (ADRS) (Cheng et al., 2025;
Jiang et al., 2024c), where LLMs automate the design of
solutions for databases, networking, and distributed sys-
tems (Liu et al., 2025; Yu et al., 2025; Wooders et al., 2024).
While LLMs can generate plausible code candidates, the
stringent correctness and performance requirements of sys-
tems demand rigorous iterative refinement. Consequently,
research focus has shifted from one-shot generation toward
autonomous multi-round optimization (Jiang et al., 2024d):
iteratively improving solutions until they exceed human-
engineered baselines or exhaust computational budgets.

Test-time reinforcement learning (RL) offers a natural frame-
work for such optimization via an RL loop of solution gen-
eration, reward evaluation, and LLM parameter update (Hu-
bert et al., 2025). However, despite its promising perfor-
mance, the scale of modern LLMs makes parameter updates
computationally prohibitive (Kaplan et al., 2020). Mean-
while, leading LLM providers typically offer exclusively
API-based access, precluding weight entirely. Training-
free alternatives—evolutionary strategies such as AlphaE-
volve (Novikov et al., 2025) and multi-agent frameworks
such as CAMEL (Li et al., 2023)—sidestep this constraint
but exhibit low search efficiency: they lack mechanisms for
compressing accumulated context during iteration and for
extracting precise optimization signals from long evolution-
ary history.

In this paper, we introduce ContextEvolve, a multi-
agent framework designed for high search efficiency under
parameter-blind constraints. Our key insight is that, instead
of relying on a single monolithic model to manage the entire
search state, optimization context can be decomposed into
three orthogonal dimensions, each managed by a specialized
agent. In ContextEvolve, a Summarizer Agent condenses
semantic state, distilling code artifacts into natural language
abstracts preserving critical state information; a Navigator
Agent distills optimization direction, extracting textual gra-
dients from trajectory analysis; and a Sampler Agent man-
ages experience distribution, retrieving diverse, high-value
exemplars as few-shot references. Crucially, this orches-
tration establishes a functional isomorphism with test-time

https://anonymous.4open.science/r/ContextEvolve-ACC
https://anonymous.4open.science/r/ContextEvolve-ACC

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

RL: the Summarizer Agent corresponds to state representa-
tion learning, the Navigator Agent emulates policy gradient
estimation, and the Sampler Agent implements prioritized
experience replay. This alignment enables ContextEvolve
to inherit RL’s sample efficiency while operating entirely in
a text space without parameter access.

Our main contributions are:

* We propose ContextEvolve, a multi-agent framework
achieving high search efficiency for system code op-
timization under API-only constraints via structured
context compression.

* We introduce a suite of three specialized agents, includ-
ing Summary, Gradient, and Sampler, which decompose
context into semantic state, optimization direction, and
experience distribution, and collectively approximate a
test-time RL loop in a parameter-blind and textual space.

* On the ADRS benchmark across diverse systems code
optimization domains, ContextEvolve surpasses state-
of-the-art methods by 33.3% while reducing token con-
sumption by 29.0%.

2. Related Works

Context Management. Long-horizon agentic workflows
quickly accumulate large search state information, making
context management a central bottleneck. Prior work ad-
dresses it from several angles: scaling model-side context
capacity despite common failures such as positional bias
and the lost-in-the-middle effect (Dai et al., 2019; Beltagy
et al., 2020; Zaheer et al., 2020; Borgeaud et al., 2022; Liu
et al., 2024a; Zhang et al., 2024), externalizing long-term
state into system-side memory (Lewis et al., 2020; Park
et al., 2023; Packer et al., 2023), increasing information den-
sity via prompt compression and token pruning (Jiang et al.,
2023; 2024b; Pan et al., 2024), and reducing prompt bur-
den through agentic structuring that decomposes reasoning,
search, and tool interaction into explicit loops (Yao et al.,
2022; 2023; Shinn et al., 2023; Yang et al., 2024). How-
ever, these general approaches do not explicitly separate the
distinct requirements of evolutionary systems code optimiza-
tion, including preserving functional invariants, extracting
improvement direction from noisy multi-metric trajecto-
ries, and maintaining diversity. In contrast, ContextEvolve
decomposes context into semantic state, optimization di-
rection, and experience distribution and assigns each to a
specialized agent for high information density and low token
cost across long runs.

LLM-based Evolutionary. For high-stakes code genera-
tion, one-shot LLM outputs often exhibit incorrectness or
underperform test-time search loops that repeatedly propose
candidates, evaluate with automated verifier, and update
future proposals from historical feedback. Recent work in-

stantiates this with evolutionary coding agents that treat pro-
grams as individuals and use evaluation-driven selection and
mutation for open-ended evolution and algorithm discov-
ery (Lange et al., 2025; Assumpcao et al., 2025; Wan et al.,
2025; Wu et al., 2024; Liu et al., 2024b). Closely related,
prompt/instruction evolution optimizes discrete textual arti-
facts via population-based search and reflective mutation/s-
election (Fernando et al., 2023; Guo et al., 2023; Zhou
et al., 2022; Pryzant et al., 2023; Yang et al., 2023); orthog-
onally, several approaches pursue more directed improve-
ment signals without weight updates by storing verbal feed-
back or optimizing against model-provided critiques (Shinn
et al., 2023; Yuksekgonul et al., 2025; Zhang et al., 2025).
Nevertheless, existing evolutionary pipelines remain token-
inefficient because they inflate prompts with raw history
or compress context without explicit semantic disentangle-
ment, leading to slower iteration and higher cost. Our pro-
posed ContextEvolve targets these bottlenecks by maintain-
ing compact semantic state, distilling textual gradients from
weighted trajectory rollouts, and sampling exemplars via an
RL-inspired experience distribution mechanism.

3. Preliminaries
3.1. Single-shot Generation

Let C denote the potentially discrete space of valid exe-
cutable code solutions for a given problem. Given a task
description D, a trainable LLM My produces executable
code ¢ € C via the sampling process ¢ ~ My(- | D). Then
an automated evaluation oracle £ : C — R evaluates the
code and returns a scalar score s = £(c) reflecting the
solution quality.

3.2. Evolutionary Optimization

Training-free evolutionary methods treat the model param-
eters 6 as immutable, and extend the single-shot paradigm
to an iterative evolutionary process where the system itera-
tively refines solutions based on historical feedback. Define
the optimization history #; at step ¢ as the sequence of
generated solutions and their scores up to the previous step,

Ht :{(00780>7(cla81)7'~'7(thlastfl)}u (1)

where each ¢; € C and s; = £(c¢;), and a context compres-
sion operator ® that distills #; into a short textual repre-
sentation. The generation process at step ¢ could be thus
formulated as,

et ~ Mo(- | 2(Hy), D),

where T is the maximum iteration.

t<T, @

Our goal is to design the context compression operator ® to
maximize the expected score of the best solution,

Maximize E m?guf(ci) | ®,D|. 3)

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

4. Method

4.1. Overall Framework

We propose ContextEvolve, a multi-agent framework for
ADRS that compresses raw interaction logs into a refined op-
timization context, thereby enabling high search efficiency
under strict parameter-blind constraints. To effectively com-
press the extensive evolutionary experience into a finite win-
dow, our framework decomposes the optimization context
into three orthogonal dimensions: semantic state, optimiza-
tion direction, and experience distribution. Accordingly, we
introduce three specialized agents to distinctively manage
them. Specifically, the Summarizer Agent maintains the
semantic state by condensing complex code artifacts into
concise natural language abstracts. The Navigator Agent
steers the optimization direction by distilling promising
search guidance from historical trajectories. Finally, the
Sampler Agent modulates the experience distribution by
curating diverse and high-value exemplars to serve as in-
structive few-shot references. This decomposition and agent
specialization allow our approach to construct a compact,
semantically rich context representation that effectively uti-
lizes previous experience for the next generation.

Beyond context compression, we also establish a functional
isomorphism with RL algorithms, where our agents collabo-
ratively approximate key mechanisms of search efficiency
purely in the natural language space without any parameter
updates. Specifically, the Summarizer Agent corresponds to
state representation learning, the Navigator Agent emulates
policy gradient updates, and the Sampler Agent implements
prioritized experience replay. This theoretical alignment
ensures that our framework is not merely a heuristic search
but a principled isomorphism of RL, thereby significantly
highlighting the search efficiency of ContextEvolve.

The collaborative workflow of these agents constitutes our
evolutionary pipeline, as detailed in Algorithm 1. In each
iteration, the process begins by selecting a parent solution c”
from the Evolve Buffer based on pre-defined criteria. First,
the Navigator Agent analyzes multiple evolution trajectories
rolled out from the Evolve Buffer. By scrutinizing the corre-
lation between code modifications and metric fluctuations,
it distills optimization directions for potential performance
gains. Next, conditioned on the parent’s semantic state and
this directional guidance, the Sampler Agent curates a set
of instructive exemplars from the population to serve as
few-shot references. Subsequently, the Generator Agent
integrates the parent, the directional guidance, and the re-
trieved exemplars to generate a superior offspring ¢, which
is immediately assessed by the evaluator for its fitness. Fol-
lowing evaluation, the Summarizer Agent compares the
offspring against its parent to abstract the key characteristics
into a new semantic summary. Finally, the new generated
code along with its abstract and fitness will be added to the

Algorithm 1 ContextEvolve: Multi-Agent Evolutionary
Pipeline (with RL Functional Isomorphism)

Input: Task D, LLM My, Evaluator £, Ancestor cg
Input: Env &, Policy 7y, Reward R, Initial State s
Initialize: Evolve Buffer B, < {(co, S0,20)}
Initialize: Replay Buffer 5, < ()
fort =1to T do
// Phase 1: Semantic State Selection
(c?, 22, V) < SelectParent(Beyorve)
st < Observe(Eeny); e+ = Encoder(st)
// Phase 2: Optimization Direction
10: 7 < Rollout(B.); g; < GradientAgent(7)
11: 7'~ B,; V.J <« Estimator(7")
12: // Phase 3: Experience Distribution
13: E., < SamplerAgent(Be, 27, g;)
14: 7’ <« PrioritizedSample(,.)
15: // Phase 4: Context Construction
16: ®; <« Compose(zY, g¢, Eetz)
17: Al «+ VE,[J(7)]
18: // Phase 5: Code Generation
19: ¢f ~ Mpg(-| Dy)
20 O+ 0+ alb; a; ~ 7o (-] st)
21: // Phase 6: Evaluation
22: 8¢+ E(c)
23: 1 < R(st,ar)
24: // Phase 7: Semantic State
25: z{ + SummaryAgent(z}, cf)
26: Sir1 < Eenv(St,ar); erp1 = Encoder(s;yq)
27. // Phase 8: Buffer Updat
28: B, « B U{(c, s, 20;ct, 56, 28)}
29: B, < B, U{(st,as,rs,8:41)}
30: end for
31: Output: Best solution ¢* with the highest score s*

PRI DIUN AR

Evolve Buffer and ready for the next iteration.

4.2. Specialized Context Compression Agents

While training-free inference-time optimization demon-
strates potential in ADRS, current approaches still face
significant challenges regarding search efficiency and in-
formation density within limited contexts. Frameworks
like OpenEvolve retain the original optimization history
within a restricted window, which results in the underutiliza-
tion of context, leading to search efficiency and suboptimal
outcomes. This challenge underscores the critical need for
effective context management in the face of accumulating in-
formation. To address this, we decompose the optimization
context into three largely orthogonal semantic dimensions:
semantic state, optimization direction, and experience distri-
bution, and employ three specialized agents to distinctively
maintain them.

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Evolve
Buffer

rollout

Original Context

decompose

Summarizer Navigator Sampler

concentrate

optimizationldirection
Guide <

Abs1 semantic state

experience distribution
Abs2 compress

—> OpenEvolve

Abs3 =

——» ContextEvolve
ContextEvolve

OpenEvolve

update

generation

Figure 1. The pipeline comparison of ContextEvolve and OpenEvolve. OpenEvolve (red) directly concentrates the few original codes
in limited context window, leading to low information density and inefficient evolutionary search. ContextEvolve (green) leverages
specialized context distillation agents to compress the lengthy context, enriching the limited window with numerous valuable information.

SUMMARIZER AGENT: SEMANTIC STATE
CONDENSATION

The Summarizer Agent maintains and condenses the se-
mantic state. It encodes high-dimensional code into a con-
cise, high-level textual abstract that strips away redundancy
while preserving critical property. To ensure the abstract
captures both the innovative designs of the offspring and
the vital functional segments inherited from the parent, we
provide the agent with the parent’s abstract z,, and the off-
spring’s raw code c.. The Summarizer Agent is tasked with
summarizing both novel aspects and preserved elements,
formulated as

2%~ M, (| Promptsummary(zp’ CC))' “

By transforming raw code differences and similarities into
dense semantic descriptions, the Summarizer Agent packs
more insights into the limited context window, ensuring that
critical historical experience remains accessible throughout
entire evolutionary process.

NAVIGATOR AGENT: OPTIMIZATION DIRECTION
DISTILLATION

The Navigator Agent governs the optimization direction by
distilling high-level guidance from historical successes and
failures. To ensure the offspring benefits from high-quality
past improvements, the agent samples trajectories based on
metric variations ASs = Spqrent — Schild- These trajecto-
ries are weighted and sampled based on As across three
distinct categories: consistent improvement, mixed fluctu-
ation, and consistent decline. By recording the evolution
of abstracts and the corresponding metric shifts, the agent
distills directional guidance,

gt =GradientAgent({7 ~ p(As)J.,})
~ M92(' | Promptsummary{(zzp? Zicv ASZ’)}Z’ET)’)

where m is the number of sampled trajectories and p(As)
weights the categories.

By analyzing the correlation between algorithmic changes
and metric fluctuations, the Navigator Agent prevents the
evolution from repeated futile attempts and steers it toward
unexplored high-potential regions, significantly accelerating
convergence toward optimal solutions.

SAMPLER AGENT: EXPERIENCE DISTRIBUTION
MODULATION

The Sampler Agent regulates the experience distribution
by curating a small set of the most informative solutions to
serve as quality few-shot exemplars. To balance exploration
and exploitation, the agent selects individuals from the pop-
ulation based on their relevance, diversity, and proven out-
comes, considering the parent state 2P and the current guid-
ance ¢,

Eeta ~ Moy (- | Prompty, 1. (Be, 27, 9)). ©)

By populating the context window with high-value demon-
strations rather than random history, the Sampler Agent
provides the generator with the most relevant references for
the current optimization step while maximizing the utility
of each token.

In conclusion, these specialized agents collaboratively trans-
form context management from mere log buildup into an
active compression process. This capability enables the
system to conduct deep, long-horizon searches within a

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

fixed-length context window and achieve robust optimiza-
tion performance with minimal token consumption.

4.3. Functional Isomorphism with RL

The efficiency of ContextEvolve comes from its active
context compression. However, beyond this information-
theoretic perspective, we observe a profound functional
isomorphism between our multi-agent framework and the
fundamental components of RL. Notably, this alignment
emerges naturally from the logical decomposition of context
management rather than guiding its initial creation. Given
that RL frameworks are renowned for their high sample
efficiency in complex decision spaces, this isomorphism
provides strong support for the superior search capabili-
ties and token efficiency of our parameter-blind framework.
Specifically, just as RL agents maximize cumulative rewards
by iteratively updating representations, directions, and expe-
riences, our agents collaborate to refine solutions through
analogous mechanisms.

SEMANTIC STATE AS STATE REPRESENTATION

In RL, raw observations are often high-dimensional and
noisy. Effective learning relies on an encoder that con-
denses these observations into a compact latent feature vec-
tor, capturing the essential dynamics required for down-
stream decision-making. Similarly, the Summarizer Agent
condenses high-dimensional code artifacts c into a concise
semantic abstract z,

SummaryAgent(z”, ¢¢) < Encoder(o;).)

TEXTUAL GUIDANCE AS POLICY GRADIENT

Policy gradients in RL derive directional updates from sam-
pled trajectories to maximize the expected return. In our
setting, since the model parameters 6 are frozen, the con-
text prompt P serves as the effective adjustable parameter
set. The Navigator Agent performs an operation analogous
to gradient estimation by distilling improvement directions
from weighted historical trajectories,

GradientAgent(7) < VoE, [J(7)]. (8)

This isomorphism reveals that ContextEvolve performs gra-
dient ascent in the semantic space, offering a directed search
mechanism more efficient than random mutation.

CONTEXT SAMPLING AS PRIORITIZED EXPERIENCE

Off-policy RL gains massive efficiency by breaking tem-
poral correlations and reusing past transitions via a Replay
Buffer. The Sampler Agent implements a semantic version
of this, retrieving exemplars F conditioned on the current

semantic state and directional guidance:

SamplerAgent(B,, 27, g) < PS(B,.), ©)

It enables the model learns from the most instructive histori-
cal failures and successes rather than the immediate past.

SYSTEM-LEVEL STRUCTURAL ALIGNMENT

Beyond the context agents, the structure of ContextEvolve
mirrors the fundamental architecture of an RL system:

* Generator Agent as Policy Network: The generator
My, conditioned on the dynamic context ®, functions
as the stochastic policy 7 (-|s). By integrating the com-
pressed state, direction, and exemplars, it executes the
generative action that maps the current context to the
solution space.

* Evolve Buffer as Replay Buffer: The storage of tuples
(¢, 8, 2) in Beyorve is functionally equivalent to the replay
buffer D = {(s, a, r,s’)}. This decoupling of data gener-
ation from data utilization allows our agents to perform
off-policy optimization, extracting global insights from
the entire exploration history.

In conclusion, this isomorphism reveals that ContextEvolve
is not merely a heuristic search method but a principled
approximation of an RL system operating in a textual latent
space. By reconstructing the mechanisms of state repre-
sentation, gradient guidance, and experience replay using
natural language agents, ContextEvolve inherits RL-like
sample efficiency in a completely training-free setting.

5. Experiments
5.1. Experimental Setup

We evaluate ContextEvolve on five challenging scenarios
from the ADRS benchmark: Transaction Scheduling (TS),
SQL Optimization (SQL), Load Balancing (LB), Sparse At-
tention Kernel (SAK), and Model Placement (MP). Specific
details about these tasks are provided in Appendix A.

We first compare ContextEvolve against static generation
methods, including: (1) Heuristics (Cheng et al., 2025), rep-
resenting traditional rule-based algorithms widely deployed
in production systems; (2) Human-SOTA (Cheng et al.,
2024; Liu et al., 2025; Yu et al., 2025; Desai et al., 2025),
denoting state-of-the-art solutions manually crafted by do-
main experts; and (3) LLM One-shot, where the model
produces a solution in a single pass based on the prob-
lem description, serving as the performance lower bound
for LLM-based capabilities. We also compare against ad-
vanced LLM-based evolutionary approaches, including (4)

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Table 1. Overall performance comparison on ADRS benchmark. We report the key domain-specific metrics along with combined score.

Method TS (100 iters) SQL (100 iters) LB (300 iters) SAK (100 iters) MP (100 iters)
Make.| Corr.t Scoref|Hit.t Lat.] Scoref|Bal.t Spe.t Scoref|Dens.] Err.] Scorel |Press.t Succ.t Scoref
Heuristics 38.50 1.00 2591 |0.56 51.86 0.53 | 0.25 0.20 0.13 | 0.731 0.481 0.606 | 20.89 1.00 21.89
Human-SOTA | 3240 1.00 30.80 [0.69 1743 0.66 | 024 043 0.14 | 0.717 0469 0593 | 21.34 1.00 22.34
LLM One-shot | 35.80 1.00 27.86 | 0.64 0.69 0.66 | 0.25 0.20 0.13 | 0.730 0.471 0.600 | 21.03 096 21.99
GEPA 29.00 1.00 3436]0.72 0.65 0.73 | 0.25 020 0.14 | 0.627 0.575 0.602 | 21.49 1.00 22.49
OpenEvolve 2970 1.00 33.56 | 0.71 2.01 0.72 | 0.25 045 0.15 | 0.727 0.454 0.591 | 21.67 1.00 22.67
ContextEvolve | 27.60 1.00 36.10 | 0.78 0.56 0.79 | 0.34 0.65 0.20 | 0.676 0.496 0.586 | 23.02 1.00 24.02
Impr. % \ -4.8 +0.0 +5.1 \ +8.3 -13.9 +8.2 \ +36.0 +44.4 +33.3 \ 7.8 92 +09 \ +6.2 +0.0 +6.0
(a) Best-so-far Performance over Iterations (b) Token Usage Comparison across Tasks (c) Ablation Study Across Tasks

—e— GEPA
~#- OpenEvolve
—a— ContextEvolve (Ours)

mam OpenEvolve

300M 1 2o ContextEvolve

200M

Token Usage
g
g

< 0K 55
013 o K 2
: %% a%a% %%

Iteration

7, 1.00 B w/o Summarizer

23 w/o sampler
21% = B w/o Gradient

098

XX
5
e

R
35

QXX
CRX
RIS,

Q
&

5K
!

%S

3
o
~
oo

&S

el
5%
&S

208

23
&

%

%
KL

%

o

3

&
ot
%

N
35
RS
SO v
SRS 5
0% S
Relative Performance

%
X

X
o0

X
&
bt
IRRRRR

%
X

X2

&
%
X

03950,
XX
0%

LRRXX

H
3.

‘Transaction Scheduling (TS)

SQL Optimization (SQL)
Tasks

Model Placement (MP)

Figure 2. Efficiency analysis and ablation studies of ContextEvolve. (a) Best-so-far performance trajectories over evolutionary iterations
in the LB task. (b) Cumulative token usage across five ADRS tasks. (¢) Relative performance of ablated variants.

OpenEvolve (an open-source implementation of AlphaE-
volve) (Sharma, 2025), and (5) GEPA (Agrawal et al., 2025),
a prompt optimization framework that employs reflective
mutation and Pareto-based selection. Since these tasks uni-
versally require optimizing trade-offs, we report two com-
peting metrics as well as a weighted combined score which
calculated based on the domain-specific importance. We uti-
lize Qwen3 (Yang et al., 2025) as the underlying foundation
model for all LLM-based components, including the context
agents in our framework and the baseline generators.

5.2. Overall Performance

The comparison results on the ADRS benchmark between
ContextEvolve and baselines are presented in Table 1 where
we can derive the following observations:

» Existing baselines yield sub-optimal solutions due to
search inefficiencies. Static generation methods, includ-
ing Heuristics, Human-SOTA, and LLM One-shot, gener-
ally establish the lower bound for performance. Especially
in the TS task, the Human-SOTA solution lags behind the
evolutionary method by over 17%. These methods rely
on pre-defined rules or single-pass inference and lack the
feedback loops necessary to navigate high-dimensional
search spaces. Though evolutinary methods like GEPA
and OpenEvolve improve upon static baselines by leverag-
ing iterative feedback, they suffer from inefficient context
utilization, limiting the depth of exploration within a fixed
budget. On average, they always obtain sub-optimal solu-
tion and trail ContextEvolve by 6.5% in overall scores.

* ContextEvolve displays significant advantages through
multi-agent context compression. Our approach lever-
ages multi-agent collaboration and orthogonal context
decomposition to actively compress optimization histo-
ries, addressing the challenges of unguided search and
information bloat. Through specialized agents for context
compression, it comprehensively surpasses existing base-
lines across all five ADRS tasks, achieving an average
score improvement of 6.5% over the top baseline. Particu-
larly in the LB task, where baselines struggle to optimize
the balance metric and only yield minor gains in speed,
our method elevates balance by over 36% while delivering
the fastest speed. These results underscore the necessity
and effectiveness of context compression in evolutionary
optimization, enabling outstanding search efficiency with
superior token utility.

We further analyze the efficiency of our framework by ex-
amining both the evolutionary trajectory and the token cost
associated with the search process. As illustrated in Fig-
ure 2(a), evolutionary baselines converge rapidly within the
first 60 iterations and expend over 40% of total attempts on
failed or repetitive exploration to achieve less than a 0.1%
score improvement, indicating a low marginal utility of
search. In contrast, ContextEvolve maintains a continuous
upward trajectory by context compression, which updates
the best-so-far solution 83.3% more frequently than base-
lines. Notably, when baselines stagnate in local optima,
ContextEvolve achieves a 22.4% score breakthrough and
sustain steady improvements.

To validate our context compression strategy, Figure 2(b)

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

compares cumulative token usage against OpenEvolve. A
counter-intuitive finding is that while our multi-agent frame-
work requires over 3x more API calls, total token con-
sumption is universally lower, averaging a 17.3% reduction.
Whereas OpenEvolve concatenates multiple raw codes di-
rectly into prompts, ContextEvolve curates fewer high-value
exemplars based on condensed semantic states, significantly
boosting information density per token. Furthermore, this
efficiency gain scales with task complexity. For lightweight
tasks like Transaction Scheduling (TS) and Model Place-
ment (MP) with short code solutions, the consumption re-
mains comparable (difference < 5%). But for complex
tasks like Load Balancing (LB) that involve lengthy imple-
mentations, our method saves nearly 30%, proving its strong
handling of high-context loads.

5.3. Ablation Study

We conduct an ablation study to validate the efficacy of our
multi-agent architecture. We evaluate variants of Contex-
tEvolve by independently removing each context manage-
ment agent and illustrate the results in Figure 2(c). The re-
moval of any agent leads to a decline in final solution perfor-
mance, with average impacts ranked as Summarizer Agent
(-9.3%), Sampler Agent (-6.0%), and Navigator Agent (-
2.9%). These results confirm that our architecture effectively
manages distinct context dimensions, and the absence of any
agent results in a loss of critical context information, thereby
reducing search efficiency and overall performance degra-
dation. Notably, removing the Summarizer Agent yields
the most severe regression, pushing performance close to
the LLM one-shot baseline. Specifically, the scores on TS,
SQL, and MP deteriorate by 10.4%, 10.8%, and 6.7%, re-
spectively. Without such semantic condensation, the limited
context window becomes dominated by verbose syntax and
low-level details, sharply reducing information density and
directly impairs the reasoning capabilities of the Genera-
tor Agent. Furthermore, the absence of concise summaries
hinders the Gradient and Sampler Agents from distilling
valid optimization directions and curating relevant exem-
plars, which indirectly destabilizes the overall evolutionary
performance through cascading effects in agent cooperation.

5.4. Case Study: Load Balancing Task

We conduct a case study on the LB task to dissect
how ContextEvolve achieves algorithmic breakthroughs
compared to evolutionary baselines. The evolution be-
gins with a standard greedy implementation derived from
DeepSeek (DeepSeek Al, 2024). After 10 evolutionary iter-
ations, both OpenEvolve and ContextEvolve independently
discover a ”Snake Round-Robin” heuristic strategy. This
approach replaces the inefficient linear search in the pack-
ing phase with a pre-calculated zigzag assignment pattern,
significantly improving assignment speed. Notably, this

Iteration 37

Iteration 0
(@) satance:0.25,Spoed:0.20, Score:0.13 (b) satance:0.2s, Speed:0.45, Score:0.15

#Phase 1: Replication (Greedy)

#Phase 1: Replication (Greedy)

edy(weights)
Balance Keep

Speed Up

#Phase 2: Packing (Vectorized Snake)

ids = pattern. repeat{len(weights))
al_map = scatter(pack_ids, indices)

Initial Program Snake Round-Robin

OpenEvolve

Balance Up
ConetxtEvolve X

Speed Up

Balance Up
Speed Down

Iteration 49

d Iteration 97
(d) Balance:0.33, Speed:0.67, Score:0.18 (c) Balance:0.33, Speed:0.06, Score:0.17

#Phase 1: Replic

(Largest Remainder) #Phase 1: Replication (Largest Remainder)

(weight) * num_replicas ide: sum(weights)) * num_replicas

#Phase n nake) Balance Keep
Speed Up

i
pattern(1::2] = pattern{1::2] flip(dims=[1]

Final Solution Largest Remainder

Figure 3. (a) The initial solution adopts greedy replication and
linear-scan packing, achieving moderate balance but limited speed.
(b) A vectorized snake round-robin assignment improves runtime
while preserving balance. (c¢) Largest-remainder proportional ap-
portionment yields balance gains at the cost of reduced speed. (d)
The final solution recovers speed without sacrificing balance.

variant is not publicly available (Cheng et al., 2025) and
is absent from the base model’s training data (Yang et al.,
2025), highlighting the capability of LLM-based evolution
to discover advanced algorithmic concepts.

Afterward, the optimization trajectories diverge. While
OpenEvolve generates only minor syntactic variations of
the zigzag pattern until the budget is exhausted, Contex-
tEvolve analyzes historical bottlenecks and identifies that
heuristic sorting alone fails to handle extreme tail loads.
As illustrated in Figure 3(c), by the 49th iteration Contex-
tEvolve proposes a fundamental algorithmic shift in the
replication stage, abandoning the iterative greedy approach
in favor of a largest remainder proportional apportionment
strategy. Specifically, it calculates the ideal replica count
based on the expert’s global load proportion, floors this
value to ensure minimum allocation, and prioritizes dis-
tributing the remaining capacity to experts with the largest
fractional remainders. This rigorous global allocation boosts
the balancedness score from 0.25 to 0.33 (+32%). Despite
the gain in balance, this sophisticated allocation introduces
computational overhead via complex tensor operations, ini-
tially causing the speed score to drop. To address this, Con-
textEvolve retrieves both the previous high-speed solution
and the new high-balance solution as in-context exemplars.
Leveraging these references, the framework re-integrates the
searched ”Snake Round-Robin” strategy, and further intro-
duces closed-form tensor transformations (see Figure 3(d))
to substantially strengthen the speed advantage. This op-
timization restores and exceeds the original speed score
while maintaining superior balancedness, outperforming the
baselines on both metrics simultaneously.

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Summarizer Agent
Better Prompt:
summary both novel and inherited features ...

Worse Prompt: H
summary the advantages ...

Balance: 0.344
Speed: 0.653
Score: 0.205

Balance: 0.344 (-0.0%)
Speed: 0.150(-77.0%)
Score: 0.179 (-12.7%)

Navigator Agent

Better Prompt:
suggest algorithmic paradigms instead of implementation ...
Worse Prompt: | No 1

suggest practical optimization... i_

Balance: 0.251(-27.0%)
Speed: 0.255 (-60.9%)
Score: 0.138 (-32.7%)

Balance: 0.344
Speed: 0.653
Score: 0.205

Sampler Agent
Better Prompt:
provide top and innovative codes ...
______________ -
Worse Prompt: i No |
provide codes with high metrics ... Breakthrough |

Balance: 0.344
Speed: 0.653
Score: 0.205

Balance: 0.251 (-27.0%)
Speed: 0.452 (-30.8%)
Score: 0.148 (-27.8%)

Figure 4. Takeaways from prompt perturbations. (a) Preserving ancestral traits is as critical as capturing innovation. (b) Directional
ambiguity guidance outperforms implementation specificity. (¢) Sampling should prioritize informative semantics, not only high scores.

5.5. Design Takeaways

Beyond demonstrating performance superiority, we aim to
distill high-level design concepts for context management
that may generalize to other LLM-based inference-time
search methods. Unlike the structural ablation study, we
maintain the macro-level multi-agent architecture but ap-
ply specific micro-level perturbations to the prompt design
of each agent. We visualize these prompt modifications
and their performance on the Load Balancing (LB) task in
Figure 4, from which we derive three critical insights.

Preserving ancestral traits is as critical as capturing in-
novation. For the Summarizer Agent, effective semantic
condensation must balance the extraction of novel modifi-
cations with the retention of inherited features. When we
modify the prompt to summarize only the novel changes of
an offspring, the performance drops by more than 12.6%.
Further analysis of the evolutionary trajectory further shows
that while the key heuristic strategy (see Section 5.4 (c)) still
emerges, its discovery is delayed substantially from the 49th
to the 87th iteration. The underlying cause is an amnesia
effect: beneficial inherited characteristics are present in the
raw code but omitted in the semantic state. As a result, other
agents that rely on summaries repeatedly misinterpret well-
explored directions as underexplored opportunities, leading
to redundant trials and degraded search efficiency.

Directional ambiguity guidance outperforms implemen-
tation specificity. For the Navigator Agent, ambiguity in
high-level direction is beneficial, while over-specification
is detrimental. We modified the gradient prompt to pro-
vide specific, practical implementation steps rather than
abstract directions, performance significantly drops to 0.138
(—32.7%), failing to find advanced heuristics. This col-
lapse arises because highly specific instructions implicitly
commit the search to a narrow set of edits before candidate
generation. Consequently, the Generator Agent is forced to
instantiate a prescribed plan with limited degrees of freedom,
behaving more like a code formatter than an explorer of al-
ternative algorithmic branches. This prematurely narrows
the effective solution space, suppresses generative diversity,
and makes the optimization trajectory prone to local optima,
thereby hindering the discovery of new paradigms.

Sampling should prioritize informative semantics, not

only high scores. For the Sampler Agent, high-scoring
exemplars are not the sole source of valuable information,
as low-quality or even failed individuals often contain the
seeds of breakthroughs. When we restrict the sampler to
return only the highest-scoring individuals, the final score
decreases to 0.148 (—27.8%), only on par with OpenEvolve,
and the run fails to identify advanced heuristics. A retrospec-
tive analysis shows that the decisive inspiration for the final
breakthrough on balancedness in the original ContextEvolve
comes from a failed “vectorized binary-search thresholding
strategy,” which received a score of 0 due to implementa-
tion errors. Although functionally broken, its underlying
logic of heuristic allocation was semantically innovative,
motivating the generation of the best-performing “Largest
Remainder” strategy. Through semantic state analysis, the
Sampler Agent should carefully extract promising concepts
even from low-scoring individuals, allowing the system to
iterate on flawed but brilliant ideas and preventing the pre-
mature discard of potentially transformative insights due to
imperfect preliminary implementations.

6. Discussion

In this work, we present ContextEvolve, a multi-agent frame-
work that addresses the inefficiency of training-free evolu-
tionary search for systems code optimization. By decompos-
ing the optimization history into orthogonal dimensions, our
approach effectively overcomes the information bottlenecks.
This architecture establishes a functional isomorphism with
reinforcement learning, indicating its high search efficiency
within parameter-blind setting. Empirical results on the
ADRS benchmark demonstrate that ContextEvolve signif-
icantly outperforms state-of-the-art baselines in solution
quality while substantially reducing token consumption.

Despite these advancements, several avenues remain for
future investigation. Our research focuses primarily on
functionally isolated algorithm. Scaling ContextEvolve to
optimize large-scale codebases with complex inter-module
dependencies requires further study. Moreover, develop-
ing stabilizing mechanisms to mitigate the high variance
exacerbated by LLM is critical for ensuring consistent out-
comes. Finally, we will investigate evaluation mechanisms
to promote the discovery of diversity algorithmic diverse
algorithmic paradigms.

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Impact Statement

This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References

Agrawal, L. A., Tan, S., Soylu, D., Ziems, N., Khare, R.,
Opsahl-Ong, K., Singhvi, A., Shandilya, H., Ryan, M. J.,
Jiang, M., et al. Gepa: Reflective prompt evolution
can outperform reinforcement learning. arXiv preprint
arXiv:2507.19457, 2025.

Assumpgao, H., Ferreira, D., Campos, L., and Murai, F.
Codeevolve: An open source evolutionary coding agent
for algorithm discovery and optimization. arXiv preprint
arXiv:2510.14150, 2025.

Beltagy, 1., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., Van Den Driessche, G. B., Lespiau, J.-B.,
Damoc, B., Clark, A., et al. Improving language models
by retrieving from trillions of tokens. In International
conference on machine learning, pp. 2206-2240. PMLR,
2022.

Cheng, A., Kabcenell, A., Chan, J., Shi, X., Bailis, P,
Crooks, N., and Stoica, I. Towards optimal transaction
scheduling. Proceedings of the VLDB Endowment, 17
(11):2694-2707, 2024.

Cheng, A., Liu, S., Pan, M., Li, Z., Wang, B., Krentsel, A.,
Xia, T., Cemri, M., Park, J., Yang, S., Chen, J., Agrawal,
L., Desai, A., Xing, J., Sen, K., Zaharia, M., and Stoica,
I. Barbarians at the gate: How Al is upending systems
research. arXiv preprint arXiv:2510.06189, 2025.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Proceedings of

the 57th annual meeting of the association for computa-
tional linguistics, pp. 2978-2988, 2019.

DeepSeek Al. EPLB: Expert parallelism load bal-
ancer. https://github.com/deepseek-ai/
EPLB, 2024. GitHub repository, accessed January 2026.

Desai, A., Agrawal, K. K., Yang, S., Cuadron, A., Schroeder,
L. G., Zaharia, M., Gonzalez, J. E., and Stoica, I.
vattention: Verified sparse attention. arXiv preprint
arXiv:2510.05688, 2025.

Fernando, C., Banarse, D., Michalewski, H., Osindero,
S., and Rocktéschel, T. Promptbreeder: Self-referential
self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., Liu,
G., Bian, J., and Yang, Y. Connecting large language mod-
els with evolutionary algorithms yields powerful prompt
optimizers. arXiv preprint arXiv:2309.08532, 2023.

Hubert, T., Mehta, R., Sartran, L., Horvath, M. Z., Zuiic’, G,
Wieser, E., Huang, A., Schrittwieser, J., Schroecker, Y.,
Masoom, H., et al. Olympiad-level formal mathematical
reasoning with reinforcement learning. Nature, pp. 1-3,
2025.

Jiang, C., Shu, X., Qian, H., Lu, X., Zhou, J., Zhou, A.,
and Yu, Y. Llmopt: Learning to define and solve gen-
eral optimization problems from scratch. arXiv preprint
arXiv:2410.13213, 2024a.

Jiang, H., Wu, Q., Lin, C.-Y., Yang, Y., and Qiu, L. Llmlin-
gua: Compressing prompts for accelerated inference of
large language models. arXiv preprint arXiv:2310.05736,
2023.

Jiang, H., Wu, Q., Luo, X., Li, D., Lin, C.-Y., Yang, Y., and
Qiu, L. Longllmlingua: Accelerating and enhancing llms
in long context scenarios via prompt compression. In Pro-
ceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp- 1658-1677, 2024b.

Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. A survey
on large language models for code generation. ACM
Transactions on Software Engineering and Methodology,
2024c.

Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G.,
Jin, Z., and Jiao, W. Self-planning code generation with
large language models. ACM Transactions on Software
Engineering and Methodology, 33(7):1-30, 2024d.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Lange, R. T., Imajuku, Y., and Cetin, E. Shinkaevolve:
Towards open-ended and sample-efficient program evolu-
tion. arXiv preprint arXiv:2509.19349, 2025.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Kiittler, H., Lewis, M., Yih, W.-t., Rocktéschel,
T., et al. Retrieval-augmented generation for knowledge-

intensive nlp tasks. Advances in neural information pro-
cessing systems, 33:9459-9474, 2020.

https://github.com/deepseek-ai/EPLB
https://github.com/deepseek-ai/EPLB

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for “mind”
exploration of large language model society. Advances

in Neural Information Processing Systems, 36:51991—
52008, 2023.

Liu, N. F, Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts. Transactions of the
association for computational linguistics, 12:157-173,
2024a.

Liu, S, Chen, C., Qu, X., Tang, K., and Ong, Y.-S. Large
language models as evolutionary optimizers. In 2024
IEEE Congress on Evolutionary Computation (CEC), pp.
1-8. IEEE, 2024b.

Liu, S., Ponnapalli, S., Shankar, S., Zeighami, S., Zhu, A.,
Agarwal, S., Chen, R., Suwito, S., Yuan, S., Stoica, 1.,
et al. Supporting our ai overlords: Redesigning data sys-
tems to be agent-first. arXiv preprint arXiv:2509.00997,
2025.

Novikov, A., Vii, N., Eisenberger, M., Dupont, E., Huang,
P.-S., Wagner, A. Z., Shirobokov, S., Kozlovskii, B., Ruiz,
F. J., Mehrabian, A., et al. Alphaevolve: A coding agent
for scientific and algorithmic discovery. arXiv preprint
arXiv:2506.13131, 2025.

Packer, C., Fang, V., Patil, S., Lin, K., Wooders, S., and
Gonzalez, J. Memgpt: Towards llms as operating systems.
2023.

Pan, Z., Wu, Q., Jiang, H., Xia, M., Luo, X., Zhang, J., Lin,
Q., Riihle, V., Yang, Y., Lin, C.-Y,, et al. Llmlingua-2:
Data distillation for efficient and faithful task-agnostic
prompt compression. arXiv preprint arXiv:2403.12968,
2024.

Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang,
P, and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In Proceedings of the 36th

annual acm symposium on user interface software and
technology, pp. 1-22, 2023.

Pryzant, R., Iter, D., Li, J,, Lee, Y. T., Zhu, C., and Zeng, M.
Automatic prompt optimization with” gradient descent”
and beam search. arXiv preprint arXiv:2305.03495, 2023.

Sharma, A. Openevolve: an open-source evolutionary
coding agent, 2025. URL https://github.com/
codelion/openevolve.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

10

Wan, C., Dai, X., Wang, Z., Li, M., Wang, Y., Mao, Y., Lan,
Y., and Xiao, Z. Loongflow: Directed evolutionary search
via a cognitive plan-execute-summarize paradigm. arXiv
preprint arXiv:2512.24077, 2025.

Wooders, S., Liu, S., Jain, P., Mo, X., Gonzalez, J. E., Liu,
V., and Stoica, I. Cloudcast:{High-Throughput},{Cost-
Aware} overlay multicast in the cloud. In 27st USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 24), pp. 281-296, 2024.

Wu, X., Wu, S.-h., Wu, J., Feng, L., and Tan, K. C. Evolu-
tionary computation in the era of large language model:
Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 2024.

Yang, A., Li, A., Yang, B., Zhang, B., Hui, B., Zheng, B.,
Yu, B., Gao, C., Huang, C., Lv, C., et al. Qwen3 technical
report. arXiv preprint arXiv:2505.09388, 2025.

Yang, C., Wang, X., Lu, Y., Liu, H,, Le, Q. V., Zhou, D.,
and Chen, X. Large language models as optimizers. In
The Twelfth International Conference on Learning Repre-
sentations, 2023.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao,
S., Narasimhan, K., and Press, O. Swe-agent: Agent-
computer interfaces enable automated software engineer-

ing. Advances in Neural Information Processing Systems,
37:50528-50652, 2024.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K. R., and Cao, Y. React: Synergizing reasoning and
acting in language models. In The eleventh international
conference on learning representations, 2022.

Yao, S., Yu, D., Zhao, J., Shafran, 1., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in neural
information processing systems, 36:11809-11822, 2023.

Yu, S., Xing, J.,, Qiao, Y., Ma, M., Li, Y., Wang, Y., Yang,
S., Xie, Z., Cao, S., Bao, K., et al. Prism: Unleashing
gpu sharing for cost-efficient multi-llm serving. arXiv
preprint arXiv:2505.04021, 2025.

Yuksekgonul, M., Bianchi, F., Boen, J., Liu, S., Lu, P,
Huang, Z., Guestrin, C., and Zou, J. Optimizing gener-
ative ai by backpropagating language model feedback.
Nature, 639:609-616, 2025.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-

quences. Advances in neural information processing
systems, 33:17283-17297, 2020.

https://github.com/codelion/openevolve
https://github.com/codelion/openevolve

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

Zhang, Y., Zhang, Y., Leach, K., and Huang, Y. Codegrad:
Integrating multi-step verification with gradient-based
1Im refinement. arXiv preprint arXiv:2508.10059, 2025.

Zhang, Z., Chen, R., Liu, S., Yao, Z., Ruwase, O., Chen,
B., Wu, X., Wang, Z., et al. Found in the middle: How
language models use long contexts better via plug-and-
play positional encoding. Advances in Neural Information
Processing Systems, 37:60755-60775, 2024.

Zhou, Y., Muresanu, A. 1., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. Steering large language models
using ape. In NeurlPS ML Safety Workshop, 2022.

Zoph, B. and Le, Q. V. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016.

11

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

A. ADRS Benchmark

The ADRS benchmark contains five challenging optimization tasks that demonstrate the versatility and effectiveness of
ContextEvolve in different contexts. Below, each task is described along with its specific objectives and the trade-offs
involved in optimizing the solution.

 Transaction Scheduling (TS): This task involves optimizing the execution order of transactions in a database system to
minimize the total execution time, also known as the makespan (Make.). The optimization problem requires balancing
the trade-off between transaction order and latency. The goal is to maximize the correctness rate (Corr.) and throughput.

* SQL Optimization (SQL): In SQL Optimization, the objective is to reorder rows and fields of a table to maximize the
hit rate in a Key-Value (KV) cache, which ultimately improves the speed of SQL query inference. The challenge lies in
balancing the prefix cache hit rate (Hit.) against the latency (Lat.) of the reordering algorithm.

* Load Balancing (LB): The Load Balancing task focuses on optimizing the distribution of computational load across
multiple GPUs, such as in a Mixture of Experts (MoE) model. The key objective is to maximize the load imbalance
(Bal.), ensuring that each GPU handles a proportionate share of the computational workload while also maximizing the
speed (Spe.) of rebalancing the load across GPUs when changes occur.

* Sparse Attention Kernel (SAK): This task aims to optimize sparse attention mechanisms in neural network models,
where the goal is to strike a balance between the density of the active indices in the attention mask and the relative error
introduced by this sparsity. The optimization involves designing attention masks that minimize the combined loss of
density (Dens.) and relative error (Err.).

* Model Placement (MP): The Model Placement task involves optimizing the placement of large machine learning
models across multiple GPUs to reduce contention and ensure efficient resource utilization. The optimization focuses
on minimizing the KV pressure ratio (KVPR) across GPUs, which is a measure of cache contention. The task seeks to
reduce the KVPR (higher Press.) to improve the performance of model inference while ensuring successful (Succ.)
utilization of GPUs.

B. Best Evolved Code

In this section, we present specific examples of the highest-performing code solutions discovered by ContextEvolve during
the evolutionary process. Specifically, Figure 5 provides a side-by-side comparison of the evolutionary breakthrough in
the Load Balancing (LB) task. The initial solution relies on iterative Python loops, while the best solution discovered by
ContextEvolve utilizes vectorized tensor operations and a rigorous proportional allocation strategy. The initial codes and the
best evolved code for all the five tasks are provided in our code repository. These artifacts demonstrate the ability of our
framework to discover complex algorithmic logic, such as proportional apportionment and heap-based optimization, which
are absent in the initial seed code.

12

20

ContextEvolve: Multi-Agent Context Compression for Systems Code Optimization

(a) Initial Code

Characteristics: Iterative Greedy, Linear Scan, Python Loops
def balanced_packing(weight, num_packs) :

Greedy Linear Scan Strategy
Complexity: O (Num_Layers * Num_Groups)

num_groups = weight.shape
num_groups // num_packs

num_layers,
groups_per_pack =

... setup code omitted

SLOW: Python-level nested loops

for 1 in range (num_layers) :
pack_weights = [0] * num_packs
pack_items = [0] * num_packs

Iterating over every group
for group in indices[i]:
Linear scan to find min-load pack
pack = min(
(k for k in range (num_packs)
if pack_items[k] < groups_per_pack),
key=pack_weights.__getitem__,
)

Scalar assignment (High Overhead)
pack_index[i, group] = pack
pack_weights[pack] += weight[i, group]

return pack_index, rank_in_pack

def replicate_experts (weight, num_phy) :
Iterative Greedy Replication

Complexity: O(Num_Replicas * Num_Layers)

n, num_log = weight.shape
... setup code omitted
logcent = torch.ones(...)
SLOW: Loop once per extra replica needed
for 1 in range (num_log, num_phy) :
Recalculate max load at every step
scores = weight / logcnt
idx = scores.max (dim=-1) .indices

Incremental update

phy2log[:, i] = idx
rank[:, i] = logcnt[..., idx]
logent[..., idx] += 1

return phy2log, rank, logcnt

11
12
13

14

15

16
17
18
19
20

TR,
9 B

def

(b) Best Evolved Code (ContextEvolve)

Characteristics: Snake Heuristic, Proportional, Vectorized
balanced_packing (weight, num_packs) :

Vectorized Snake Round-Robin Strategy
Complexity: O(l) Tensor Operations

num_layers, num_items =
device = weight.device

weight.shape

Sort weights descending
sorted_indices = torch.argsort (weight,
True)

descending=

Snake Pattern Generation
N, N, ..., 1, O

INNOVATION 1:
Pattern: 0, 1, 2, ...,

p_ids = torch.arange (num_packs, device=device)
pattern = p_ids.unsqueeze (0) .repeat (items_per_pack,
1)

Flip every second row to create zig-zag
pattern[l::2] = pattern[l::2].flip(dims=[1])

Flatten to match items
pack_ids = pattern.flatten() [:num_items]

INNOVATION 2: Vectorized Assignment
Eliminates Python loops entirely
pack_index.scatter_(1l, sorted_indices, pack_ids)

return pack_index, rank_in_pack

replicate_experts (weight, num_phy) :
Proportional Apportionment (Largest Remainder)
Complexity: O(l) via Sort/TopK

num_layers, num_log = weight.shape

INNOVATION 3: Global Calculation

Calculate ideal share based on weight ratio
total = weight.sum(dim=1, keepdim=True)

ideal = (weight * num_phy) / total

Assign integer parts immediately
logcnt = ideal.floor () .to(torch.int64)

INNOVATION 4: Deficit Filling
Distribute remaining slots based on fractions
deficit = num_phy - logcnt.sum(dim=1, keepdim=True)

Sort by marginal gain (approximation)

scores = weight / (logent + 1).float ()

_, sorted_indices = torch.sort (scores, desc=True)

Vectorized allocation of remainder

rank_idx = torch.arange (num_log) .expand (num_layers,
-1)

mask = rank_idx < deficit

logcnt.scatter_add_ (1, sorted_indices, mask.long())

return build _mapping(logcnt) # Helper omitted

Figure 5. Code evolution in the Load Balancing task. (a) The initial baseline uses inefficient iterative loops for both packing and
replication. (b) The best code evolved by ContextEvolve introduces Vectorized Snake Round-Robin (Green Highlights) to maximize
speed and Proportional Apportionment (Blue Highlights) to maximize load balance. These algorithmic breakthroughs resulted in a

33.3% improvement in the combined score.

13

