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Developing smart cities is vital for ensuring sustainable development and improving human well-being. One critical aspect of building
smart cities is designing intelligent methods to address various decision-making problems that arise in urban areas. As machine learning
techniques continue to advance rapidly, a growing body of research has been focused on utilizing these methods to achieve intelligent
urban decision making. In this survey, we conduct a systematic literature review on the application of machine learning methods
in urban decision making, with a focus on planning, transportation, and healthcare. First, we provide a taxonomy based on typical
applications of machine learning methods for urban decision making. We then present background knowledge on these tasks and the
machine learning techniques that have been adopted to solve them. Next, we examine the challenges and advantages of applying
machine learning in urban decision making, including issues related to urban complexity, urban heterogeneity and computational
cost. Afterward and primarily, we elaborate on the existing machine learning methods that aim to solve urban decision making tasks
in planning, transportation, and healthcare, highlighting their strengths and limitations. Finally, we discuss open problems and the
future directions of applying machine learning to enable intelligent urban decision making, such as developing foundation models
and combining reinforcement learning algorithms with human feedback. We hope this survey can help researchers in related fields
understand the recent progress made in existing works, and inspire novel applications of machine learning in smart cities.
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1 INTRODUCTION

With rapid urbanization, cities now host more than half of the world’s population and are centers of economic
activity [261]. Thus, utilizing the power of advanced technologies to build smart cities is critical for achieving sustainable
development and improving living standards. In particular, smart cities give rise to a variety of decision-making tasks
that can have a significant impact on the development of cities. For example, intelligent planning of facilities in the
city can make residents access various services in close proximity, significantly improving the efficiency of the city’s
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operation. In addition, decision regarding vehicles and traffic lights can reduce traffic congestion and air pollution,
lower carbon emissions, and reduce commuting times for residents. Furthermore, making informed decisions about the
allocation of medical resources and the movement of people can help to control the spread of infectious diseases in
cities and safeguard public health. In general, building intelligent models to solve urban decision-making tasks lies at
the core of realizing the full potential of smart cities.

Researchers have proposed numerous solutions to address the long-standing urban decision-making tasks. In the past,
due to computational limitations and a lack of data, traditional methods such as meta-heuristics, genetic algorithms, and
mixed integer optimization were primarily used. However, cities in reality are much complicated systems, rendering
the results of these methods far from optimal. In recent years, as data collection and storage capabilities have increased
and computing power has leaped forward, machine learning methods, including deep learning (DL) and reinforcement
learning (RL), have made remarkable strides. In particular, neural networks in DL methods can handle multivariate
inputs and capture complex high-dimensional nonlinear relationships. When combined with RL, they enable value
estimation and strategy search in huge action spaces, solving many decision-making problems that were previously
thought to be intractable for machines. These technological advances have provided new tools for intelligent urban
decision making, resulting in the state-of-the-art solutions in many tasks and producing a significant number of research
articles. As smart city research is still emerging, it is necessary to conduct a review of articles that apply machine
learning to solve urban decision-making tasks.

In this survey, we aim to provide a systematic literature review on existing approaches of machine learning for
urban decision making. In fact, there are diverse decision-making scenarios in smart city, organically interconnected
and influenced by each other, which together determine the dynamics of the city. We conduct a systematic literature
review of over 160 research papers published in the past six years from mainstream journals and conferences. After
thorough investigation of these papers, we identify three most relevant and typical use cases of machine learning in
urban decision making, which influence cities at different time scales. Firstly, on the long-term scale, urban planning
decisions such as land use and road layout essentially determine how residents use the city, incurring far-reaching
effects on urban dynamics measured by years. Secondly, on the medium-term scale, urban healthcare decisions
such as pandemic spreading control strategies shape the urban dynamics through periodic assessments and targeted
interventions measured by days. Thirdly, on the short-term scale, urban transportation decisions like traffic light
control and vehicle dispatching directly affects the mobility flow, changing urban dynamics in real time measured by
seconds. Therefore, we propose a taxonomy of research topics based on the application tasks in smart cities, focusing on
the above three major decision-making tasks with the most number of publications, namely planning, transportation,
and healthcare. For other decision-making scenarios in the city, we can not cover everything in a single survey, but they
are also promising research directions, and we refer readers to other scenario-specific surveys [2, 47, 57, 96, 179, 245].

For each decision-making task, we provide detailed introduction of typical approaches, and give the necessary
preliminary background, including the problem formulation of each task, as well as the technical information of
the adopted machine learning methods. Meanwhile, we analyze the challenges and advantages of applying machine
learning methods in these tasks, and discuss open problems and future directions in intelligent urban decision making.
Fig. 1 illustrates the structure of this survey. Ultimately, our goal is to inform policymakers, practitioners, and other
stakeholders on how they can leverage machine learning to improve the quality of life for urban residents, enhance
sustainability, and advance the state of the art in these domains. The contributions of this survey are as follows:
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Fig. 1. Overall structure of this survey.

Paper Problems ML methods Applications Example Tasks

[39] prediction
analysis

DL
SL

transportation
healthcare
environment
public safety

transportation flow prediction
medical imaging
air quality prediction
vehicle detection

[8] prediction
analysis

DL
SL

home
healthcare
transportation
surveillance
environment

energy monitoring
disease prediction
vehicle mobility prediction
fire detection
garbage detection

[211] clustering
analysis

DL
UL

urban sustainability
urbanization and regional study
built environment
urban dynamics

flood mapping
remote sensing
function and morphology study
urban behavior pattern study

ours decision-making
RL
DL
SL & UL

planning
transportation
healthcare

road network design
traffic light control
medical resources allocation

Table 1. Comparison with related reviews in smart cities

• We propose a taxonomy of representative machine learning approaches in urban decision making, including planning,
transportation, and healthcare, which covers the most relevant perspectives that influence the urban dynamics over
long-term, short-term, and medium-term, respectively.

• We provide a comprehensive view of existing paradigms of machine learning techniques in urban decision making,
summarizing its challenges and advantages. Besides systematically elaborating on the status quo of machine learning
in urban decision-making, we provide guidance for future directions.

• Compared to the related surveys regarding supervised learning (SL) and unsupervised learning (UL) for urban
prediction and analysis (see Table 1), we not only focus on the different decision tasks but also incorporate recent
advances in machine learning, such as novel deep reinforcement learning (RL) algorithms.
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Fig. 2. An illustration of sub-problems in urban planning.

The paper is organized as follows: We first introduce the background of three urban decision-making tasks in Section
2. Next we provide necessary preliminaries of adopted machine learning methods in Section 3. After discussing the
challenges of utilizing machine learning techniques in urban decision-making, we elaborate on existing representative
methods in Section 4. Finally, we discuss several open problems and provide insights of future directions in Section 5
and conclude the survey in Section 6.

2 BACKGROUND

2.1 Decision in urban planning

Urban planning is a process of designing the spatial arrangement of cities to improve the quality of life for residents. As
human activities and environmental factors significantly impact urban planning schemes, traditional approaches often
require field surveys, which can be time-consuming and costly. Specifically, it is challenging for traditional optimization
methods to deal with problems with large scales and numerous constraints, which are common in practical planning
problems. To address these issues, researchers have increasingly turned to machine learning methods, due to their
powerful ability to solve nonlinear problems. As demonstrated in Fig. 2, machine learning for urban planning can be
broadly categorized into five sub-problems: function allocation, facility location, road (general lane) design, bike lane
(exclusive lane) design, and public transportation design. The first two fall under the umbrella of land-use planning,
while the remaining three concern road network planning.
Land use planning. Aiming to maximize the comprehensive benefits for urban residents by rationally grouping
urban land, urban land use planning entails two critical issues: urban function allocation and facility location planning.
Urban function allocation divides urban land into logical and contiguous functional areas, such as residential and
commercial areas, while facility location planning selects and allocates land for public facilities, such as hospitals,
Manuscript submitted to ACM
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Fig. 3. An illustration of sub-problems in traffic optimization.

schools, and charging stations. Both sub-tasks significantly impact residents’ daily commuting costs and living expenses,
as unreasonable division schemes and facility locations can greatly reduce the accessibility of public services.
Road network planning. Urban road network planning aims to minimize the average travel cost for urban residents by
expanding or reconstructing the traffic network, which can be categorized into road design, bike lane design, and public
transportation design according to the planning content. Road design focuses on planning ordinary roads to ensure
connectivity between regions, serving as the foundation of other planning efforts. Bike lane and public transportation
design aim to reduce dependence on automobiles after establishing the road network, focusing on selecting cycling
routes and locating public stops that meet the population’s travel needs. Urban road network planning is a bi-level
optimization problem that concerns policy-makers and traffic participants, where the decisions made by policy-makers
at the top level affect the behavior of the participants at the lower level, and vice versa, rendering road network planning
a challenging problem. Specifically, traffic participants generate traffic behaviour in the road network designed by
policy-makers, and these traffic behaviours are also feedback for decision-makers to evaluate whether the road network
is reasonable so that decision-makers can develop a road network of higher quality.

2.2 Decision in urban transportation

Cities are encountering a rising number of vehicles on the roads, posing significant challenges to urban transportation,
such as traffic congestion and air pollution. The purpose of urban transportation decision is to mitigate these issues by
effectively managing the traffic flow, such that cities can provide safe, reliable, and sustainable travel for their inhabitants.
A large number of studies have emerged which leverage machine learning to address urban transportation decision,
optimizing from various perspectives. For example, the flow of vehicles can be directly controlled by dynamically
adjusting traffic lights. Meanwhile, the traffic flow can be indirectly controlled by modifying road tolls and pricing
according to real-time traffic conditions. Here we concentrate on four primary tasks in urban transportation decision:
traffic light control, vehicle routing problem, dispatching problem, and traffic tolling and pricing problem, which have
been extensively researched in both academia and industry, with a broad range of applications in modern urban services,
such as logistics and ride-hailing scenarios.
Vehicle Routing Problem (VRP). VRP is an extension of the Traveling Salesman Problem (TSP) which is also an
NP-hard problem, aiming to design the shortest routing of vehicles given several destinations [24]. This problem is
extensively applied in urban transportation and has great significance to reduce vehicle energy consumption. Almost
all VRP problems are derived from the fundamental Capacitated Vehicle Routing Problem (CVRP) [159]. As shown in
Fig. 3(a), in CVRP, before the vehicle eventually return to the depot, it needs to visit several customers with different
demands. We can use𝐺 = (𝑉 , 𝐸) to represent the graph formed by depot and customers. 𝑉 = {𝑣0, 𝑣1, ..., 𝑣𝑁 } is the node
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Fig. 4. An illustration of sub-problems in dispatching.

set representing the depot and customers, where 𝑣0 represents depot, and 𝐸 is the set of edges. Since the capacity of the
vehicle is limited (represented as 𝐶), the vehicle may return to the depot multiple times during the course of its mission.
We call the sequence of each time a vehicle leaves and returns to depot as a tour and the𝑚-th tour can be denoted
as 𝜋𝑚 = (𝑣0, 𝑣𝑚,1, ..., 𝑣𝑚,𝑡 , ..., ) where 𝑣𝑚,𝑡 denotes the 𝑡-th customer that vehicle visits in𝑚-th tour. Then, the whole
routing strategy of vehicle can be represented as 𝜋 = {𝜋1, 𝜋2, ..., 𝜋𝑚, ...𝜋𝐾 }. Given the above definitions, CVRP is to find
a route strategy to minimize the total distance of all vehicles with all customer demands fulfilled. We denote the overall
distance cost of the𝑚-th tour of the vehicle as 𝐷 (𝜋𝑚). CVRP can be formulated as belows:

min
∑︁𝐾

𝑚=1
𝐷 (𝜋𝑚), (1)

𝑠 .𝑡 . 𝜋1 ∪ 𝜋2 ∪ · · · ∪ 𝜋𝑚 · · · ∪𝜋𝐾 = 𝑉 , (2)

𝜋𝑚 ∩ 𝜋𝑛 = {𝑣0},∀𝑚,𝑛 ≤ 𝐾,𝑚 ≠ 𝑛, (3)∑︁ |𝜋𝑚 |
𝑖=2

𝑑𝑚,𝑖 ≤ 𝐶,∀𝑚 ≤ 𝐾 (4)

where 𝑑𝑚,𝑖 is the demand of customer 𝑣𝑚,𝑖 . Constraints (2) and (3) indicate that all customers must be visited and only
visited once with demands satisfied, and constraint (4) indicates that a vehicle cannot carry more goods than its capacity.
Traffic Light Controlling. Fig. 3(b) depicts how traffic in the city can navigate through intersections controlled
by traffic signals, which regulate vehicular and pedestrian movement. Green lights indicate vehicle and pedestrian
movement, whereas red lights signal them to stop until the light turns green. The main objective of traffic signal control
is to reduce vehicle wait times and queue lengths at intersections by modifying traffic light states, including signal
phase and time intervals, based on various relevant factors [13].
Dispatching. As illustrated in Fig. 4, the dispatching task consists of order dispatching and vehicle repositioning, which
can be modeled and optimized jointly, as they both have an impact on the distribution of vehicles and passengers.
Order Dispatching. As illustrated in Fig. 4 left, order dispatching involves matching orders with workers, where the
definition of workers is context-dependent. For example, in the ride-hailing scenario, a worker refers to a driver, while
in the express and food delivery scenarios, a worker denotes a rider. The task of order dispatching can be formulated
mathematically using a dynamic bipartite graph G, consisting two types of nodes, worker nodes Nw and order nodes
No, whose node information changes dynamically over time. The process of order dispatching is to connect edges
between nodes of workers and orders. Notably, there are different restrictions on the edges in different scenarios. For
instance, in the ride-hailing scenario, a driver typically serves only one order, so one worker node can only connect to
one order node. Conversely, in the express and food delivery scenarios, one worker can receive multiple orders, so
one worker node can be connected to multiple order nodes. There are usually three aspects of optimization objectives:
Manuscript submitted to ACM
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Fig. 5. Illustrations of traffic tolling and pricing.

long-term income of the platform (e.g. total income of all workers), passenger experience (e.g. order response rate), and
worker fairness (e.g. the lowest income of different workers).
Vehicle dispatching. As shown in Fig. 4 right, vehicle repositioning, also known as fleet management, re-positions
resources (vehicles or bikes) to balance supply and demand. This task is generally combined with order dispatching tasks
using rule-based methods, with the goal to maximize the total income of the platform. Although vehicle dispatching
does not produce immediate rewards, the reward function is introduced through the price of finishing the task of order
dispatching. As a result, the platform can obtain more income by achieving a balance between supply and demand.
Traffic Tolling and Pricing. Dynamic tolling and pricing strategies based on the traffic situation can help alleviate
traffic congestion and balance supply and demand distribution, which are critical for improving traffic efficiency.
Traffic Tolling. As shown in Fig. 5(a), traffic tolling involves charging travelers during specific time periods and in
congested areas, in order to compensate for the economic losses caused by traffic congestion. Meanwhile, it can
incentivize travelers to choose cheaper routes, thereby reducing traffic congestion. In essence, it aims to set a reasonable
price based on the congestion condition of each road or region and guide people’s travel intention.
Traffic Pricing. In ride-hailing and taxis services, dynamic pricing plays a crucial role in balancing supply and demand.
As shown in Fig. 5(b), the ride-hailing platform sets the price based on the traffic scenario and travel distance given a
travel request sent by a passenger, and drivers will enter the order matching list after accepting the price. During peak
times, when demand exceeds supply, increasing prices can attract more drivers to hot areas and serve more passengers.
Moreover, passengers may modify their travel demands based on the price changes. Closely linked to the supply and
demand, it can be optimized together with order or vehicle dispatching.

2.3 Decision in urban healthcare

The generalized concept of healthcare refers to the science of preventing disease, prolonging life, and promoting
health and efficiency through organized community efforts for the sanitation of the environment [198]. With the fast
development of modern life and industry, the problem of environmental pollution is becoming increasingly serious,
urgently calling for efficient measures to control the pollutant and maintain a clean living environment for humans.
There exists extensive researches on environmental pollution control [89, 125, 160, 201], making efforts toward an earth
which is free from pollution. On the other hand, the pandemic of COVID-19 has swept the globe in the past three years
and caused billions of infections, warning us of the importance and necessity of continuous efforts in public health to
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prevent the pandemic spreading and thus guarding humans’ well-being. Plentiful researches on public health decisions
for pandemic spreading intervention keep emerging during these years [67, 102, 141, 143, 191], trying to help the global
fight against the COVID-19 pandemic. Therefore, in this survey, we focus on two of the most important items in urban
healthcare, controlling the pollution and intervening the pandemic, as illustrated in Fig. 6.
Environmental pollution control.As shown in Fig. 6(a), the fast development of cities leads to environmental pollution
from various sources, which profoundly threatens public health and people’s well-being. First, air pollution is among the
most common environmental pollutants, severely impacting everyone’s daily life. Sources of air pollution include vehicle
exhaust, industrial emissions, domestic emissions, etc., and the toxic substances in them can cause various diseases,
including lung cancer. The control of air pollution includes manners from various aspects, such as monitoring [265] and
forecasting [106, 188] the air qualify, optimizing transportation [54], and purifying indoor air [40, 69]. Second, water
pollution is another environmental pollution mainly caused by industrial wastewater discharging, threatening people’s
drinking water safety. The main approaches to control water pollution include limiting wastewater discharge [196] and
improving wastewater treatment efficiency [38, 241]. Besides, garbage pollution is also worthy of attention. Proper
garbage recycling contributes to environmental protection, while improper garbage processing may lead to secondary
pollution [146], causing even worse impacts on public health.
Pandemic spreading intervention. Due to the increasing population density and mobility, infectious diseases tend to
spread faster in urban areas [181], where there are thousands of blocks and millions of people. The pandemic spreading
intervention includes a non-pharmaceutical approach, i.e., population mobility restriction, and a pharmaceutical one,
i.e., medical resources allocation. The decisions in these two sub-problems are all made based on the historical pandemic
spreading situation and the intrinsic features of the urban area. The historical pandemic spreading situation includes
the changing of the number of infections and deaths from the beginning of the pandemic (𝑡0) to the current time (𝑡 ),
and we denote it as 𝑆 [𝑡0, 𝑡]. The intrinsic features describe the dynamics and structure of the urban area, including
static features and dynamic ones. Static features do not change in a short time, such as population density distribution
and population age structure, which we denote as 𝐹 . Dynamic features frequently change over time, such as population
mobility and contact, where we use 𝐹 [𝑡1, 𝑡2] to denote the features from 𝑡1 to 𝑡2.

As shown in Fig. 6(b), population mobility restriction temporarily shutdowns or proportionally reduces the population
flow between certain areas. Mathematically, when considering an urban area with 𝑛 blocks and making decision at
time 𝑡 , the inputs are 𝑆 [𝑡0, 𝑡], 𝐹 and 𝐹 [𝑡0, 𝑡], while the output is M𝑛×𝑛 [𝑡]. The element M𝑖 𝑗 [𝑡] ∈ [0, 1] refers to the
proportion of mobility restriction between block 𝑖 and 𝑗 , where 1 corresponds to no restriction, and 0 corresponds to
Manuscript submitted to ACM
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complete shutdown. Since many infectious diseases, such as COVID-19, are mainly airborne, the mobility and contact
of people is the main approach of the pandemic spreading. Therefore, reducing population mobility and contact is one
of the most essential and efficient non-pharmaceutical approaches to intervene the pandemic spreading [7, 33, 49].

As shown in Fig. 6c, medical resources allocation is to allocate the limited number of medical resources in the urban
area to maximize its utility and thus minimize the damage caused by the pandemic. Mathematically, when considering
an urban area with 𝑛 blocks and allocating𝑚 kinds of medical resources at time 𝑡 , the inputs are 𝑆 [𝑡0, 𝑡], 𝐹 and 𝐹 [𝑡0, 𝑡],
while the output is A𝑚×𝑛 [𝑡]. The element A𝑘 𝑗 [𝑡] ∈ [0, 1] refers to the proportion of the 𝑘-th kind of resource allocated
to block 𝑗 , and the elements satisfy the constraint of total available number, i.e.,

∑
𝑗 A𝑘 𝑗 [𝑡] = 1. When facing a sudden

pandemic outbreak, critical medical resources are very likely to suffer severe shortage [139, 170]. Therefore, efficient
allocation decisions on medical resources, such as vaccines [53, 138], ventilators [14, 153], hospital beds [52], play a
significant role in intervening the pandemic spreading.

3 MACHINE LEARNING METHODS FOR DECISION

In this section, we briefly review the machine learning methods frequently applied in decision-making. Here, we mainly
focus on methods with deep neural networks, i.e., deep learning, which has achieved huge success in urban decision
making. We view the machine learning methods from the angle of function estimation, where the input 𝑥 is processed
by the network, which is denoted as 𝐹𝜃 with learnable parameters 𝜃 . The network is essentially a complex function,
and we denote its output as 𝐹𝜃 (𝑥). The training process in machine learning is actually estimating a given target value
𝑦 with the function 𝐹𝜃 (𝑥) by adjusting the learnable parameters 𝜃 , which can be mathematically expressed as:

𝜃∗ = argmin
𝜃
𝐷𝐼𝐹𝐹 {𝐹𝜃 (𝑥), 𝑦}, (5)

where 𝐷𝐼𝐹𝐹 is the loss function for measuring the difference between the output of the function and the target value.
There are several kinds of frequently used loss functions, such as the mean square error (MSE) [5], the negative log-
likelihood (NLL) [97], and the cross entropy (CE) [137]. The most common way of adjusting the learnable parameters
𝜃 is stochastic gradient descent [163], where some modified gradient optimizers are designed, such as the Nesterov
momentum [145] and the Adam [88] to improve the efficiency and the stability of the learning process.

According to the training paradigm, machine learning methods can be roughly divided into 3 categories, supervised
learning, unsupervised learning, and reinforcement learning. Typically, reinforcement learning is used for end-to-end
decision-making, while the remaining two categories are used for extracting valuable information from the problem
and thus assisting decision-making [16]. Fig. 7 illustrates the two approaches of machine learning for decision-making.
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3.1 Machine learning for indirect decision-making

Supervised learning and unsupervised learning are typically used for extracting information from the raw problem and
thus assisting the decision-making. Supervised learning is the most common training paradigm in machine learning,
which typically solves two kinds of problems, i.e., classification problems and regression problems. The target values
𝑦 in supervised learning are the exact values of ground truth in the corresponding problem. In the classification
problems [92], the goal is to predict a class label according to each input 𝑥 where 𝑦 is the ground truth label of the class
that 𝑥 belongs to. In the regression problems [29], the goal is to predict a corresponding value according to each input 𝑥
where 𝑦 is the ground truth of the value that corresponds to 𝑥 . If the ground truth is available in a certain problem,
supervised learning is a good choice, utilizing the ground truth to adjust the parameters 𝜃 and thus minimizing the
difference between the ground truth and the prediction of the network. On the other hand, unsupervised learning is
another paradigm where no external signal is provided, e.g., the ground truth in supervised learning and the reward
in reinforcement learning. Instead of minimizing the difference between the output of the function and the target
value, unsupervised learning typically directly optimizes a given metric function constructed according to the intrinsic
features of the input 𝑥 . For example, clustering methods aim to maximize the similarity within each cluster and the
dissimilarity among different clusters, such as the Kmeans [66] approach while some dimensional reduction methods
maximize the variance of the data, like the principal component analysis (PCA) [231] approach.

This approach of usingmachine learning to assist decision-making is especially common in combinatorial optimization
problems. For example, Parmentier et al. [93] use machine learning on mixed-integer linear programming to estimate
whether applying a Dantzig-Wolf decomposition will be effective, and Zarpellon et al. [21] apply machine learning on
mixed-integer quadratic programming to decide if linearizing the problem will solve faster.

3.2 Machine learning for end-to-end decision-making

As another kind of machine learning method, reinforcement learning (RL) is the specialized paradigm solving sequential
decision-making problems, i.e., determining what to do (action) according to the changing outside situation (state)
in each time step to maximize a specific target (reward). Therefore, reinforcement learning is widely applied for the
end-to-end decision making, serving as the development and supplement of traditional decision methods in operations
research and management science (OR & MS). The typical setting for reinforcement learning is the Markov Decision
Processes (MDPs) defined as ⟨S,A, 𝑃, 𝑅,𝛾⟩, where 𝑠𝑡 ∈ S denotes the state space, 𝑎𝑡 ∈ A denotes the action space,
𝑃 : S × A ↦→ S denotes the state transition probability given the current state and action, and 𝑟𝑡 = 𝑅 : S × A ↦→ R
denotes the one-step reward given the current state and action. In a sequential decision process with 𝑇 steps, the
long-term return at 𝑡0 is calculated according to the discount factor 𝛾 ∈ (0, 1) and the reward of each step as:

𝑅𝑡0 =

𝑇∑︁
𝑡=𝑡0

𝛾𝑡−𝑡0𝑟𝑡 . (6)

RL approaches can be roughly divided into three categories, value-based RL, policy-based RL, and their intersection
called actor-critic. Specifically, value-based RL learns a value function that represents the expected return that the agent
can achieve from a given state or action. For example, Q-Learning [222] is a basic value-based RL method learning the
following Q function given a state-action pair:

𝑄 (𝑠, 𝑎) = E[𝑅𝑡 |𝑠 = 𝑠𝑡 , 𝑎 = 𝑎𝑡 ] = E𝑠𝑡+1 [𝑟𝑡 + 𝛾E𝑎𝑡+1 [𝑄 (𝑠𝑡+1, 𝑎𝑡+1)]], (7)
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where the recursive form is Bellman Equation. Instead of the exact values of ground truth, the target values 𝑦 in
reinforcement learning is given greedily according to the one-step reward:

𝑦 = 𝑟𝑡 + 𝛾 max
𝑎′

𝑄 ′ (𝑠𝑡+1, 𝑎′), (8)

telling the value of a certain action. Deep Q-network (DQN) [142] keeps the same mathematical essence as Q-learning
but estimates the value function with a deep neural network, representing more complex environmental situations.
Policy-based RL directly learns a policy mapping states to actions without explicitly estimating the value function:

𝜋 (𝑎 |𝑠) = 𝑃 (𝑎 |𝑠, 𝜃 ), (9)

where the parameters of the policy function 𝜃 are directly optimized towards higher return:

Δ𝜃 = 𝛼∇𝜃 log𝜋𝜃 (𝑠𝑡 , 𝑎𝑡 ) 𝑅𝑡 , (10)

Examples include policy gradient methods like REINFORCE [187] and Trust Region Policy Optimization (TRPO) [168].
Finally, actor-critic is an intersection between value-based and policy-based RL, where the agent learns a policy (the
"actor") to select actions based on feedback from a value function (the "critic") that estimates the expected return of the
actions. Examples of Actor-Critic methods include Deep Deterministic Policy Gradient (DDPG) [176] and proximal
policy optimization (PPO) [169].

Tracing back decades of history, traditional optimization methods have provided plentiful solutions to various
categories of problems, including linear optimization [18], convex optimization [23, 25], non-convex optimization [6, 45],
discrete optimization [17, 48], etc., which provide advantages including high efficiency and sound mathematical theories.
These methodologies require numerical representation of state 𝑠𝑡 ∈ S and explicit mathematical expression of the
action-reward function 𝑟𝑡 = 𝑅 : S × A. However, decision problems in urban scenarios always incorporate non-
numerical states, e.g., representing the road networks and land use with graphs in urban planning [259, 260], and
implicit action-reward function, e.g., drawing pandemic intervention reward from action via differential equations in
urban healthcare tasks [63, 65], limiting the application of traditional optimization methods. Thereby, RL develops from
value-based [142, 222] to policy-based methods [187], and further actor-critic ones [169, 176] to compensate the gap, as
mentioned above. Nevertheless, RL methods suffer shortcomings, including unstable training process [70] and lack
of action explainability [70, 154]. This enlightens further investigations combining RL and traditional optimization
methods [214], maximizing the advantages of both methods.

There also exist some applications of supervised learning in end-to-end decision-making. One of the most widely
known works is the pointer networks [132, 202], which takes in a sequential input and gives a ranking of the input
elements. The pointer networks are suitable for solving the traveling salesman problem (TSP), where the networks are
trained via supervised learning, using the optimal solutions of given instances as the ground truths.

4 CHALLENGES, ADVANTAGES, AND EXISTING METHODS

The use of machine learning for intelligent urban decision making poses several key challenges in actual research and
deployment as follows:

• Intrinsic Complexity. Urban decision-making involves navigating a complicated, multi-scale, and interconnected
system. Specifically, cities are complex systems with numerous static elements like geographical blocks, road networks,
buildings, etc., and dynamic processes, such as human movements, traffic flows, and disease transmissions. Different
elements in cities tend to have distinct scales, with rich and usually unknown connections and dependencies between
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them. For example, the traffic flow is closely related to the distribution of land functionalities in different areas, and
the spread of diseases is also strongly correlated with the movements of urban residents.

• Urban Heterogeneity. Urban decision usually exhibits diverse problem setups, such as different forms of road
networks and distributions of urban functionality in urban planning, as well as different order distributions and
distinct modes of human mobility in urban transportation and healthcare. Such strong heterogeneity makes it
challenging for a model to generalize across cities and scenarios with quite different attributes, particularly under
data-scarce conditions where we do not have access to data of all cities to train the model.

• Computational Cost. Urban decision often optimizes multiple objectives in an enormous space with various
constraints, making it very difficult to find optimal solutions. For example, facility location in urban planning and
vehicle routing in urban transportation are both NP-hard problems (non-deterministic polynomial). Meanwhile, fleet
management and order dispatching require solutions with reliable performance within a strict time constraint to
deliver prompt services, while urban planning consider various targets including efficiency and cost.

We now elaborate on how machine learning methods effectively address the above challenges in urban planning,
transportation, and healthcare.

4.1 Machine learning for decision in urban planning

4.1.1 Road network planning. The problem of road network planning can be categorized into three sub-tasks according
to the planning contents: road design, bike lane design, and public transportation design. We summarize existing
machine learning methods for the above three sub-tasks in Table 2.
Urban road design problem. As introduced previously in Section 2.1, urban road design a very complex bi-level
optimization problem, involving both policy-makers in the upper level and traffic participants in the lower level. Actions
taken in one level are generated considering the conditions of the other level, and in the meantime also influence the
behaviors in the other level. For instance, policy-makers design road networks according to the traffic patterns of the
participants, while the designed roads determine how participants take routes in the city. Similarly, traffic participants
take travel choices considering the road network, and their mobility provides feedback to policy-makers. Therefore,
it is necessary to consider the upper and lower levels of the problem comprehensively before solving this problem.
One traditional research idea is to unify the decision variables of the two levels through approximation methods,
transforming it into a single-level optimization problem, and then use mixed integer programming or meta-heuristic
methods to solve it. However, the solution accuracy tend to be sub-optimal due to over-simplification. Therefore, another
idea is to optimize the bi-level problems directly using machine learning methods. For example, the deep Bayesian
Optimization method is introduced to the solution [43, 44]. Specifically, due to the geometric properties, road networks
are naturally suitable for modelling using graph structures, so the road network design problem can be transformed into
a graph optimization problem. Following this idea, they use the Frank-Wolfe algorithm [58] to optimize the problem’s
lower level and propose a deep Bayesian graph optimization algorithm to optimize the upper level. In addition, some
researchers have also introduced machine learning methods such as the Monte Carlo method [12] and multiple linear
regression [252] into traditional models to enhance their ability to solve the bi-level problem. Fang et al. [55] adopted
generative adversarial network (GAN) which generates a road network with the generator and use the discriminator to
evaluate the generated results, achieving state-of-the-art compared with traditional optimization algorithms.
Bike lanes planning problem. For this problem, most traditional methods rely heavily on experience, which analyzes
the necessity of building bicycles through public surveys or geographical condistions, making it challenging to consider
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Problems Paper Scenarios Type Methods Year

Road design

[43] Designing urban road network end-to-end Bayesian Optimization 2019
[44] Designing urban road network end-to-end Graph neural network, etc. 2020
[12] Designing urban road network indirect Monte Carlo method, PSO 2021
[55] Designing urban road network end-to-end GAN, etc. 2022
[260] Designing urban road network end-to-end Graph neural network, RL, etc. 2023
[252] Adjusting urban road network indirect multivariate linear regression 2023

Bike lane design

[11] Expanding bike network indirect Hierarchical Clustering, etc. 2017
[3] Expanding bike network indirect Density-based clustering, etc. 2018
[68] Expanding bike network indirect Hierarchical Clustering, etc. 2019
[148] Expanding bike network indirect Louvain Algorithm, etc. 2020
[31] Expanding bike network indirect DB-SCAN, etc. 2022

Public transportation design

[157] Designing bus network indirect Density-based clustering, etc 2018
[129] Designing bus network indirect K-medoids, etc 2019
[228] Expanding city metro network end-to-end Actor-critic (RL) 2020
[230] Designing bus network indirect Monte-Carlo search tree 2020
[213] Designing bus network end-to-end GAN, Metric learning 2022
[183] Designing city metro network end-to-end Graph neural network, RL 2024

Table 2. A summary of machine learning methods used for road network planning

the constraints such as budget constraints, construction convenience and cycle lane utilization in the planning method.
Therefore, data-driven approaches for bicycle lane planning were proposed, mainly using the indirect decision-making
approach [3, 31]. For example, [11, 68] proposed a greedy network expansion algorithm guided by a scoring function
related to user coverage and travel length for bicycle lane planning based on bicycle sharing data. This method obtains
the initial point of network expansion employing spatial clustering, obtains the candidate set of lanes based on the
greedy principle, and obtains the final planning result through continuous algorithm iteration. Moreover, [148] improved
the selection method of targeting lanes. After obtaining the initial point through the hierarchical clustering method, it
uses the penetration theory to select the target lane, further improving the solution’s accuracy.
Public transport lanes planning problem. The public transportation planning involves the location selection of bus
and subway stations. For subway station, Wei et al. [228] used RL to expand the subway network in a grid manner,
which iteratively selects station locations (grid cells) according to the current planning results. Su et al. [183] further
leveraged graphs to provide a more accurate geo-spatial representation of urban regions, and proposed an RL approach
based on GNN to select new metro stations to maximize the served passenger flow. It is worth noting that subway
planning involves various constraints which are usually characterized by action masks in RL based approaches. As for
bus stations, there are mainly two categories of methods. One is similar to the subway network expansion mentioned
above, using the end-to-end scheme [213]; the other is similar to bike lane planning, introducing clustering methods in
traditional planning models [129, 157, 230] and using the indirect scheme.

4.1.2 Land use planning. As introduced previously, land use planning consists of two sub-problems, urban function
allocation and facility location. The two sub-problems focus on different scales, where function allocation plans a more
extensive region with multiple blocks, and facility location usually selects point-level locations for urban facilities.
Existing machine learning methods for land use planning are illustrated in Table 3.
Function allocation problem.With semi-structured or unstructured problems involved, traditional methods are brutal
to solve land use planning effectively, where most existing research uses simulation technology to assist planning. For
example, Li et al. [101] proposed an agent-based embedded learning model for residential land growth simulation, which
integrates the learning model, decision-making model, land-use conversion model, and urban land-use overall planning
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Problems Paper Scenarios Type Methods Year

Function allocation

[101] Allocate residential area indirect ABM-learning, etc. 2020
[117] Allocate residential area indirect CA-Markov, etc. 2020
[208] Allocate functional area end-to-end Adversarial learning 2020
[112] Allocate rural area indirect BP-ANN, etc. 2021
[207] Allocate functional area end-to-end Adversarial learning 2023
[259] Allocate functional area end-to-end Reinforcement learning 2023
[209] Allocate functional area and POI end-to-end GAN 2023
[156] Building layout generation end-to-end Diffusion 2024

Facility location

[217] Planning fire station indirect K-Means, etc. 2018
[118] Planning charging station indirect Particle swarm optimization 2019
[243] Planning warehouse location indirect Weighted K-Means, etc. 2019
[254] Planning Electric fence indirect DB-SCAN Algorithm, etc. 2019
[200] Planning dry port indirect Apriori algorithm, etc. 2020

[237] Planning collection and
delivery points indirect Gradient boosting tree,

Dynamic clustering, etc. 2021

[37] Planning bicycle stations indirect Gated Graph Neural Network 2021
[77] Planning charging station indirect K-medoids, etc. 2022
[203] Planning charging station end-to-end DQN (RL) 2022

[215] Commercial site selection end-to-end One-shot non-autoregressive
neural networks 2023

[182] Planning public infrastructure end-to-end Reinforcement learning
graph neural networks 2024

Table 3. A summary of machine learning methods used for land use planning

constraints. In addition to the agent-based learning-embedded model, Liu et al. [117] introduced the CA-Markov model
to study the impact of policy changes on urban residential land. Regarding multi-functional area planning, Liao et

al. [112] proposed BP-ANN based on historical data to predict the proportion of land allocation in various functional
areas to improve the final planning effect of the functional regions. Recent advances in generative AI and reinforcement
learning has brought new perspectives in function allocation, where end-to-end approaches [156, 207–209, 259] were
utilized to directly plan the urban functional area in a shorter time, including land use [259] and building layout [156].
Facility location problem. Charging station planning is an important problem in urban facility location, which aims
to minimize users’ waiting time or maximize the operators’ benefits with the laid charging piles . Traditional planning
methods mainly follow three schemes [140]. The first is the node-based method, which directly selects nodes from the
road network as charging stations. It is a typical NP-hard problem, and heuristic methods are commonly used to solve it.
The second is path-based method that builds charging stations on the path with the enormous traffic flow to meet user
needs. The third method is based on user behaviour, which considers the starting point, destination, travel distance,
vehicle path and dwell time, and selects the best location to set up the charging station. However, traditional methods
are limited by human experience, most of which are approximate solutions, challenging to meet the requirements in
various scenarios. Therefore, more and more researchers have begun to use machine learning to solve the problem of
charging facility planning [77, 118, 203]. For example, Wang et al. [215] proposed a differentiable optimal transport
(OT) layer to establish a general machine learning solver with one-shot neural networks, which effectively accelerate
the solution generation of facility location problems. Leonie von Wahl et al. [203] used the weighted sum of the income
and the cost as the objective function to solve it using reinforcement learning. The income function represents the total
amount of user demand that can be satisfied by this laying method, and the cost function is the travel time (i.e., the
time to go to the charging station) and the time consumed by the user to meet the charging demand. The optimization
goal is to minimize the charging fee of the user while maximizing the satisfaction of the user’s needs. At each step,
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Fig. 8. The relationship between each sub-task and the methods used in urban transportation decision.

the reinforcement learning model will optimize the layout of charging stations from three aspects: adding charging
stations, increasing the capacity of existing charging stations, and deleting existing charging stations until the number
of charging stations reaches the upper limit or exceeds the total construction cost.

Besides charging station planning, machine learning for facility planning in recent years also considers logistics
facilities, public safety facilities, and bike sharing stations [37, 182, 254]. For example, in logistics planning problems,
unsupervised clustering algorithms are usually combined with mixed integer programming methods to improve the
quality of the solution [200, 243]. In planning public safety facilities, the location of candidate facilities will be initially
obtained through clustering algorithms based on population density, historical safety accident data, etc., and then
further optimized based on other empirical methods [217].

In summary, real-world urban planning applications often exhibit an enormous solution space, causing traditional
searching approaches struggle in generating reliable solutions in an acceptable timeframe. In contrast, machine learning
approaches significantly accelerate decision-making in urban planning by accurately predicting the value of different
decisions, which facilitates efficient exploration of the solution space. Specifically, they substantially narrows down
the search space, allowing high-quality solutions to be explored more frequently. This acceleration has been verified
in real-world urban planning applications, such as urban functionality layout for communities. These tasks, which
previously relied heavily on professional human designers, have been accelerated by over 3000 times using a deep
reinforcement learning (DRL) approach that effectively addresses computational cost challenges [259], demonstrating
the practical applicability of machine learning methods in urban planning.

4.2 Machine learning for decision in urban transportation

In this section, we introduce machine learning methods for solving Vehicle Routing Problem, traffic light controlling
problem, dispatching, and traffic tolling and pricing, as shown in Fig. 8.

4.2.1 Vehicle Routing Problem. Considering the diverse and complex vehicle routing optimization scenarios in urban
traffic, in addition to the standard Vehicle Routing Problem (VRP), existing research investigates VRP variants in
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Fig. 10. Two VRP solving paradigms based on deep reinforcement learning.

practical urban traffic, where the main variations of VRP are shown in Fig. 9. For example, VRP with time windows
(VRPTW) attach each routing service with a corresponding time window, VRP with pickup and deliveries (VRPPD) or
pickup and delivery problem (PDP) features a set of transportation requests where customers or goods need to be moved
from certain pickup locations to other delivery locations. We refer readers to two awesome surveys [28, 267] for more
detailed introduction of a richer catalog of VRP variants featuring more diverse and complicated additional constraints
and objectives. Existing machine learning methods to solve VRP problems are summarized in Table 4 regarding their
learning paradigm, problem, solving paradigm, etc.

Machine learning methods for VRP and its extensions follow two paradigms: generating-based and improving-based,
as illustrated in Fig. 10. Generation based methods generate the partial solution step by step until a complete solution is
obtained. At each step of generating a partial solution, the vehicle selects the next accessible node from the unvisited
nodes according to the constraints of the problem. Improving-based methods generate a complete solution initially and
then destroys and reconstructs the complete solution using operators to improve the performance of the solution.

Following Pointer Network (Ptr-Net) [202] that solves TSP with the generation-based paradigm, several methods
were proposed that utilized supervised learning to solve routing problems. Joshi et al. [85] utilized Graph Convolution
Network (GCN) to output a heat map corresponding to the TSP tour. Sultana et al. [184] proposed a convolutional
neural network combined with a Long Short-Term Memory for solving non-Euclidean TSP in a supervised manner.
As deep reinforcement learning flourishes, researchers are applying it to solve VRP and its variants. Kool et al. [90]
proposed a encoder-decoder framework based on the attention mechanism for combinatorial optimization problems
such as CVRP, where the encoder and decoder calculate the embeddings of CVRP instances and progressively generate
the solutions of CVRP respectively, trained via the REINFORCE algorithm. Due to its superior solution performance
and inference time, Kool et al.’s model [90] has been improved for addressing VRPs in various ways [95, 236], and
adapted to different problems, such as Vehicle Routing Problem with Time Windows (VRPTW) [250], Transit Network
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Problem Category Paper Year Method Solving Paradigm

TSP
DL [202] 2015 RNN, Attention Generation
DL [85] 2019 GCN Generation
RL [95] 2021 Attention, REINFORCE Generation
RL [84] 2023 Attention, REINFORCE Generation
RL [152] 2023 REINFORCE, Hierarchical RL Improvement

CVRP

DL [71] 2021 VAE Generation
RL [144] 2018 RNN, REINFORCE, A3C Generation
RL [90] 2019 Attention, REINFORCE Generation

RL,DL [51] 2020 Attention, GCN, REINFORCE Generation
RL [236] 2021 Attention, REINFORCE Generation
RL [20] 2022 Attention, REINFORCE, Knowledge Distilling Generation
RL [263] 2023 REINFORCE, Meta Learning Generation
RL [80] 2024 REINFORCE, Deep Ensemble Generation
RL [127] 2020 MLP, REINFORCE Improvement
RL [136] 2021 Attention, PPO Improvement
RL [235] 2021 Attention, A2C Improvement
RL [268] 2022 Attention, REINFORCE Improvement
RL [81] 2023 REINFORCE, Neural Heiristic Improvement
RL [133] 2024 REINFORCE, Neural Heiristic Improvement

PDP
RL [104] 2021 Attention, REINFORCE Generation
RL [269] 2022 Attention, Cooperative A2C Generation
RL [135] 2022 Attention, PPO Improvement

Non-Euclidean TSP DL [184] 2022 GCN, LSTM Generation
OVRP RL [78] 2019 Struct2Vec, Pre-Net, REINFORCE Generation
VRPTW RL [250] 2020 Attention, REINFORCE Generation
TNDFSP RL [46] 2020 Attention, REINFORCE Generation
HCVRP RL [103] 2021 Attention, REINFORCE Generation
EVRPTW RL [115] 2022 Struct2Vec, Attention, REINFORCE Generation
DPDP RL [134] 2021 GIN, DQN, REINFORCE Improvement

Table 4. A summary of machine learning methods used for Vehicle Routing Problem

Design and Frequency Setting Problem (TNDFSP) [46], heterogeneous CVRP (HCVRP) [103], pickup and delivery
problem (PDP) [104, 269]. Moreover, Jin et al. [84] utilize multi-pointer Transformer with reversible residual networks
to manage memory consumption efficiently which demonstrates effective scalability to large-scale TSP instances while
maintaining competitive results on smaller ones. These methods provide a speed advantage without compromising the
solution’s quality compared to traditional methods.

In addition to the above generating-based RL methods, improving-based RL models were proposed. Lu et al. [127]
proposed a Learn-to-Iterate (L2I) framework to solve CVRP. Besides enhancing the current solution with RL, this
framework includes perturbation that prevents it from being trapped in a local optimal solution. Wu et al. [235]
improved the existing solutions by selecting pairwise operators (such as 2-opt) with the attention mechanism, based on
which Ma et al. [136] incorporated positional information of nodes to enhance the solution characterization using the
attention mechanism. Pan et al. [152] employ hierarchical reinforcement learning to tackle large-scale TSPs, with an
upper-level policy selecting a subset of nodes and a lower-level policy generating a tour, thereby eliminating the need
for time-consuming search procedures.

4.2.2 Traffic Light Controlling Problem. Traditionally, researchers approach this problem by converting it into an
optimization problem with assumptions. However, these assumptions might deviate from real-world scenarios, ren-
dering the control scheme impractical, which leads to an increasing reliance on learning-based methods. Particularly,
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Learning Paradigm Paper Year Method Simulator

Policy-based RL

[30] 2017 DDPG Aimsun
[162] 2019 REINFORCE SUMO
[42] 2019 A2C SUMO
[234] 2020 DDPG SUMO
[164] 2024 Hierarchical RL, MARL SUMO

Value-based RL

[227] 2018 DQN SUMO
[258] 2019 DQN SUMO
[223] 2019 DQN CityFlow
[216] 2021 DQN SUMO
[247] 2020 DQN CityFlow
[34] 2020 DQN CityFlow
[224] 2019 Attention, VFA CityFlow
[220] 2020 Attention, DQN, RNN SUMO
[59] 2016 Q-learning SUMO
[199] 2016 DQN SUMO
[126] 2022 GAT, Meta Learning, DQN CityFlow
[122] 2023 GCN, QMIX CitiFlow
[128] 2024 GAT, DQN SUMO

Table 5. A summary of machine learning methods used for Traffic lighting Controlling Problem

reinforcement learning can monitor traffic conditions and generate corresponding control strategies based on the
feedback received from the environment. Additionally, it can effectively process high-dimensional data and produce
control strategies of higher quality, avoiding the unrealistic assumptions of traditional approaches [226].

Table 5 illustrate existing RL methods for traffic light controlling problems. Several policy-based RL methods were
proposed which directly optimize policy parameters. For example, Rizzo et al. [162] proposed a policy gradient method
with a time baseline that effectively reduces policy gradient variance. Moreover, Chu et al. [42] proposed the Advantage
Actor Critic algorithm (A2C)-based, scalable, and decentralized MARL algorithm for large-scale traffic light control.
Ruan et al. [164] proposed to separate the collaborator selection as a second policy to be learned, concurrently being
updated with the original signal-controlling policy. Furthermore, several studies have utilized value-based RL which
estimates the value function to generate an policy implicitly. For instance, Wang et al. [216] developed a collaborative
double-Q learning (Co-DQL) method for large-scale traffic light control, utilizing the mean-field approximation for
better agent interactions. Lu et al. [128] enhanced decision-making by leveraging both experiential information within
individual scenarios and generalizable information across different scenarios.

4.2.3 Dispatching. Dispatching optimization includes the problems of order dispatching, vehicle dispatching and
the joint optimization of both. Most existing machine learning methods solving dispatching optimization utilize
reinforcement learning, which can be categorized into four perspectives: system perspective, vehicle perspective, order
perspective and grid perspective, of which the first two are mostly adopted. These methods can be also classified into
single-agent setting and multi-agent setting. Table 6 summarize the existing methods.
Order Dispatching. Traditional works address order dispatching problem through rule-based approaches in centralized
or decentralized settings. In the centralized setting, Liao et al. [113] and Lee et al. [98] use the myopic algorithm to
match vehicles with nearest orders. Zhang et al. [251] dispatch taxis to serve multiple orders based on combinatorial
optimization within a short time window, which can improve global performance. These methods are difficult to be
applied in the large-scale ride-hailing system due to the need to compute all available driver-order matches. In the
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Problem Paper Scenarios Method Year Agent Perspective

Order Dispatching

[108] Express DQN 2019 Multi-agent
[109] Express DQN 2020 Multi-agent
[221] Ride-hailing DQN 2018 Single-agent
[238] Ride-hailing TD, Bipartite matching 2018 Single-agent
[189] Ride-hailing DQN, Bipartite matching 2019 Single-agent
[108] Ride-hailing Mean-field A2C 2019 Multi-agent
[264] Ride-hailing DQN 2019 Multi-agent
[173] Ride-hailing REINFORCE 2020 Single-agent
[86] Ride-hailing QQN, A2C, PPO, ACER 2019 Multi-agent
[155] Ride-hailing ACER 2021 Single-agent
[100] Ride-hailing Bipartite matching 2019 -
[174] Ride-hailing DQN, Bipartite matching 2021 Single-agent
[193] Ride-hailing DQN, Bipartite matching 2021 Single-agent
[219] Ride-hailing DQN, Bipartite matching, Federated learning 2022 Single-agent
[62] Ride-hailing TD, Bipartite matching 2022 Single-agent
[165] Ride-hailing DQN, Bipartite matching 2022 Single-agent
[111] Ride-hailing DQN, Bipartite matching 2024 Single-agent
[248] Ride-hailing CQL, offline RL, ensemble 2024 Single-agent

Vehicle Dispatching

[107] Bike-sharing DQN 2018 Single-agent
[116] Ride-hailing DQN 2019 Multi-agent
[175] Ride-hailing MFRL, Bayesian optimization 2020 Multi-agent
[257] Ride-hailing DQN 2022 Single-agent
[124] Ride-hailing DQN 2022 Single-agent
[123] Ride-hailing DQN 2022 Single-agent
[225] Ride-hailing DQN, Linear programming 2023 Single-agent
[76] Ride-hailing Hierarchical RL, QMIX 2023 Multi-agent

Joint Optimization

[82] Ride-hailing DDPG, FeUdal Networks 2019 Multi-agent
[60] Ride-hailing DQN 2020 Single-agent
[190] Ride-hailing DQN, Bipartite matching 2021 Single-agent
[110] Ride-hailing TD, DQN 2021 Multi-agent
[186] Ride-hailing A2C 2022 Multi-agent
[185] Ride-hailing A2C 2024 Multi-agent
Table 6. A summary of machine learning methods used for dispatching

decentralized setting, Seow et al. [171] propose a collaborative multi-agent taxi dispatching system, which concurrently
matches multiple taxis with passengers in the same geographical area. However, this method requires multiple rounds
of direct communication between vehicles, which limits it to a small area with small number of vehicles.

Reinforcement learning approaches are more popular in solving the order dispatching problem in recent years, which
avoid complicated hand-crafted heuristics and features of rule-based approaches. Existing RL methods in ride-hailing
can be categorized into two settings, single-agent setting and multi-agent setting. Single-agent methods optimize order
dispatching from the perspective of the whole system, as shown in Fig. 11(a). A typical method is to combine RL with
a bipartite graph and combinatorial optimization. For example, Xu et al. [238] learn the state value function in the
table form from the historical real order dispatching data. With state value function and price of orders, they compute
the advantage function as the weights of order-vehicle pairs in the bipartite graph. To improve the approximation
and representation ability, Tang et al. [189] substitute the Cerebellar Value Network for tabular value function, which
can capture the demand-supply dynamics from different geographical scales. Instead of online RL, Zhang et al. [248]
proposed NondBREM, an offline RL method to learn policies from historical data to circumvent the high costs and
safety concerns associated with online policy learning.
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Central Controller

Orders Vehicles

(a) system perspective (b) vehicle perspective

Fig. 11. Two main perspectives for order dispatching.

On the other hand, multi-agent methods mainly optimize order dispatching from the perspective of each vehicle, as
shown in Fig. 11(b). These methods usually model each vehicle as an agent and apply multi-agent reinforcement learning
(MARL) to achieve coordination among vehicles. For instance, Li et al. [108] use mean-field RL method to simplify the
interaction among vehicles by taking the average action as the complex interaction of neighboring vehicles. Extending
from [108], Li et al. [109] propose a cooperative MARL algorithm by combining the markov decision processes of
cooperation in one time slot and independent optimization in a long term.

There are also some methods in multi-agent setting from perspectives of grid and order. Jin et al. [82] model each
grid as an agent, which means that each grid is a local controller for order dispatching task in its field. They divide the
city map into hierarchical areas, where each grid is a unique worker and the grid with its neighbors is called a manager.
They apply FeuDal Network to achieve cooperation among workers in the same manager.
Vehicle Dispatching. Reinforcement learning methods follow the vehicle perspective or grid perspective. [107, 116, 123,
124, 175, 257]. In the vehicle dispatching problem, the coordination among vehicles is important. Without coordination,
if too many vehicles reposition to the areas where demand exceeds supply, these areas will turn to the opposite situation
where supply exceeds demand. Lin et al. [116] consider vehicles in the same grid as homogeneous elements, so they
design their method form grid perspective instead of vehicle perspective. They propose contextual DQN and contextual
Actor Critic to realize coordination among vehicles. Specifically, they incorporate geographic context to avoid infeasible
movements by removing the invalid areas such as river and mountain. Collaborative context is also incorporated
to avoid conflict movements by eliminating actions from higher value areas to lower value areas. Huang et al. [76]
proposed a multi-level controller framework where the leader controller sets goals for the follower controller to execute,
and a MIX module is implemented to enhance algorithm stability by computing the total value of joint actions.
Joint Order Dispatching and Vehicle Dispatching. There are some methods [60, 82, 110, 186, 190] considering the
two tasks jointly to achieve better balance between vehicle-order distribution and improve performance. The challenge
of joint optimization comes from the heterogeneous action space of the two tasks. One is matching vehicles with
orders while the other is repositioning vehicles to certain areas. To address this challenge, Jin et al. [82] treat candidate
repositioning areas as fake orders with the same feature space of real orders but price zero. With homogeneous feature
space of fake orders and real orders, they design action as ranking weight vector for homogeneous features. The
ranking scores are used to select orders and repositioning areas. Tang et al. [190] overcome the challenge by designing
shared value function for both tasks. For order dispatching, they use value function to compute advantage for each
order-vehicle pair, which is served as the weight of each order-vehicle matching. Then they match orders with vehicles
by maximizing the total weights of all order-vehicle matching. For vehicle dispatching, they treat value function as
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Problem Learning Paradigm Paper Year Method

Dynamic Tolling

RL [158] 2019 MARL, eGCN
RL [166] 2021 Q-learning
RL [83] 2021 A2C, DNN
RL [218] 2022 Attention, SAC

Pricing

RL [233] 2016 Qlearning
RL [178] 2020 Qlearning
RL [61] 2020 DQN
RL [35] 2021 PPO
RL [75] 2022 SAC
RL [253] 2022 MARL
RL [99] 2023 SAC
RL [10] 2024 DQN

Pricing and
dispatching

RL [197] 2020 PPO
RL [119] 2022 MARL
RL [205] 2022 MARL
RL [36] 2019 bandit algorithm, TD learning

Table 7. A summary of machine learning methods used for traffic tolling and pricing

score for each repositioning area and take action by sampling from softmax of value functions. Sun et al. [186] address
the heterogeneous action challenge by treating both order dispatching and vehicle dispatching as selecting destination
for vehicles. Specifically, since price of order is highly correlated to distance between origin and destination, they omit
the price feature and only consider destinations of different orders when taking actions.

4.2.4 Traffic Tolling and Pricing. Dynamic traffic tolling and pricing strategies based on the real time traffic situation
and supply-demand information, can help to ease traffic congestion and balance the supply-demand distribution, which
plays an important role in increasing traffic efficiency. Table 7 summarize existing methods.
Traffic Tolling. Existing static tolling is based on the analysis of the historical state of road congestion so as to establish
the price scheme [240, 262], which is difficult to be applied in the complex and changeable scene. Thus, the study of
dynamic tolling emerges which develops the tolling scheme based on real-time traffic conditions, as shown in Table 7.
Wang et al. [218] proposed a reinforcement learning approach for dynamic traffic toll collection, which uses state-based
attention mechanism to represent the congestion of each route and designs appropriate reward function to optimize
the charging strategy. Jin et al. [83] considered the deadline of travelers to simulate the requirements of travelers,
and automatically assigned the optimal toll value of each road based on deep reinforcement learning to meet the
requirements of travelers.
Traffic pricing. Since the pricing strategy is closely related to order dispatching and vehicle dispatching problems, a good
pricing strategy can help to balance the distribution between supply and demand, increase driver incomes and enhance
travel satisfaction of passengers. Different from traditional methods that optimize pricing strategy with stochastic model,
spatio-temporal analysis, equilibrium analysis, etc [130, 131, 150, 239], reinforcement learning methods dynamically
adjust pricing strategies according to real-time traffic situations. On the one hand, the pricing strategy can be optimized
separately, combined with ruled based order dispatching or vehicle repositioning solutions [35, 61, 75, 99, 178, 233, 253].
For example, Haliem el al. [61] design a distributed dynamic pricing method, where drivers are allowed to propose
their price based on the trip. On the other hand, due to the close relation between pricing and dispatching, some
works optimize pricing and dispatching jointly [36, 119, 197, 205]. For instance, to combine the model of pricing and
order dispatching, Chen et al. [36] propose to integrate contextual bandit with TD learning to handle the two tasks
respectively, trained in a mutually bootstrapping manner.
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Action Space Paper Year Pollution Algorithm Action Optimization Target

Discrete

[72] 2020 Water DQN Open or close valves Minimize the mass of contaminant
[177] 2020 Water Q-Learning Share watersource or not Maximize the groundwater quality
[192] 2024 Water DQN Turn on or off the pumps Minimize the flood inflow

[40] 2018 Air Q-Learning Open or close windows Minimize energy consumption
and maximize air quality

[69] 2019 Air DQN Set the inverter frequency Minimize energy consumption
and maximize air quality

[106] 2021 Air Q-Learning Change the weight
coefficient Maximize the prediction accuracy

[188] 2022 Air Q-Learning Change the weight
coefficient Maximize the prediction accuracy

[172] 2023 Air DQN Air purifier perform mode Minimize energy consumption
and maximize air quality

[244] 2023 Air Sarsa Change the weight
coefficient Maximize the prediction accuracy

[167] 2022 Garbage DQN Adjust the air flaps Minimize the emission from
waste incineration

[4] 2022 Garbage DQN Choose the category Maximize the classification accuracy

Continuous

[22] 2022 Water DDPG Adjust the valves Minimize the pollutant

[38] 2021 Water DDPG Set dissolved oxygen Minimize the negative impacts of
wastewater treatment process

[241] 2021 Water Actor-Critic Set internal recycle flow Minimize the negative impacts of
wastewater treatment process

[79] 2023 Water SAC Set water quality parameters Maximize the prediction accuracy
Table 8. A summary of methods used for environmental pollution control

In summary, among the previously introduced three major challenges, the intrinsic complexity is particularly
prominent in real-world urban transportation decision due to its high-dimensional nature and the dynamically changing
problem conditions, leading to limited applicability of solely data-driven methods. Nevertheless, most existing works
were evaluated on simplified scenarios that deviate from the reality, preventing the use of existing machine learning-
based approaches in real-world urban transportation decision applications. It is worthwhile to notice that there exists
specific domain knowledge in traditional optimization solvers, which can effectively benefits decision-making in
urban transportation. Specifically, advanced machine learning methods such as RL can be utilized in combination
with optimization solvers, resulting in a hybrid solution generation that mixes data-driven and knowledge-driven
approaches. The benefits of incorporating domain knowledge into machine learning approaches have been demonstrated
in real-world urban transportation application, such as large-scale VRP containing thousands of customers. Notably,
RL approaches combined with optimization solvers can effectively decompose the problem into multiple regional
pieces and efficiently generate solutions, which have been deploted to an online logistic platform in Guangdong, China,
showcasing the applicability in practice [268].

4.3 Machine learning for decision in urban healthcare

4.3.1 Environmental pollution control. Most existing works solving decision-making tasks in environmental pollution
control use reinforcement learning-based methods. Since the emission and diffusion process of the pollutant is complex
in large-scale urban contexts, it is difficult for human experts to propose optimal control strategies. Therefore, utilizing
the capability of RL in solving complex sequential decision problems is a natural choice. Here, we mainly summarize
control methods on three major kinds of environmental pollution, i.e., water pollution [22, 38, 72, 79, 177, 192, 241], air
pollution [40, 69, 106, 172, 188, 244], and garbage pollution [4, 167], as illustrated in Table 8.
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Fig. 12. An illustration of discrete and continuous action in the sub-problems of pandemic spreading intervention.

According to the properties of the output action, existing methods can be roughly divided into two categories. The
first is discrete action space methods, selecting one action from a finite and discrete set of actions. Wang et al. [72]
design a DQN-based method to determine whether to open or close the valves in the water system, minimizing the
mass of contaminant in the drinking water. Malkawi et al. [40] employ the Q-Learning algorithm to decide whether to
open or close the windows, maximizing indoor air quality and saving energy. Besides, Spinler et al. [167] hire the DQN
method to control garbage incineration, reducing the air pollutant emission. And the second is continuous action space
methods, in which the output is to determine the action as a continuous value. Similar to [72], Goodall et al. [22] design
a method for controlling the valves in the water system to minimize the mass of contaminant, but they hire the DDPG
algorithm to determine the percentage of valves’ opening, which is a continuous value. Also, Wang et al. [38] and Si
et al. [241] respectively adopt the DDPG and the Actor-Critic algorithm to control the wastewater treatment process,
minimizing its negative impact on the environment.

4.3.2 Pandemic spreading intervention. We investigate two sub-problems of population mobility restriction and medical
resources allocation. Existing methods can be similarly divided into discrete and continuous action space methods,
whose differences are illustrated in Fig. 12.
Population mobility restriction. It is mainly a sequential decision problem, i.e. adjusting the restriction strength
among urban blocks in real-time according to the pandemic spreading situation, minimizing the damage caused by
the pandemic. Since the pandemic spreading situation changes fast, especially for cities with large populations and
strong population mobility, it is almost impossible for human experts to make real-time decisions on a fine-grained
level. Thus there leaves ample space for machine learning methods, and the existing works mostly use reinforcement
learning-based methods since it is the reliable method for solving sequential decision problems.

Both discrete action space methods [1, 27, 87, 94, 147, 151, 204] and continuous action space approaches [32, 50, 114]
have been proposed. Table 9 illustrates the commonality and differences among existing methods for population mobility
restriction in terms of the algorithm, action, and optimization target. In terms of discrete action, Hitmi et al. [151]
employ the Q-Learning algorithm to determine the restriction strength from 20 optional levels, reducing infections
and minimizing the cost of restrictions. Büyüktahtakın et al. [27] use the DQN algorithm to choose the intervention
and vaccination policy from 9 options with the aim of reducing infections and maintaining the social economy. Hamid
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Action Space Paper Year Algorithm Action Optimization Target

Discrete

[94] 2021 D3QN Lockdown and travel
restriction (3*3 levels)

Reduce infections, and
accelerate the recovery

[147] 2020 DDQN Movement restriction
(3 levels)

Reduce infections, and
maintain the economy

[204] 2021 model-based RL Official intervention
policy (3 levels)

Reduce infections, and
maintain the economy

[151] 2021 Q-Learning Restriction strength
(20 levels)

Reduce infections, and
minimize the cost

[27] 2023 DQN Interventions and
vaccination policy (9 levels)

Reduce infections, and
maintain the economy

[87] 2020 DQN Whether to keep each node
open or lock it down (binary)

Reduce infections, and
minimize the cost

[1] 2022 DQN How the agent move to aviod
crowd situation (5 ways) Reduce infections

Continuous
[32] 2022 DDPG, PPO, TD3 The strength of

intervention polices
Reduce infections, and
maintain the economy

[114] 2020 PPO Probablity of keeping schools
open or locking them down Reduce infections

[50] 2023 PPO Mode of intervention polices Reduce infections, and
maintain the economy

Table 9. A summary of RL methods used for population mobility restriction

Action Space Paper Year Resource Algorithm Action Optimization Target

Discrete

[15] 2021 Vaccines Actor-Critic To whom the vaccines
should be allocated

Reduce infections,
and minimize the cost

of resources

[266] 2022 Vaccines Actor-Critic Level of allocation
strategies (5 levels)

Reduce infections,
and maintain the economy

[14] 2021 Ventilators Q-Learning Policies of resources
transfer (3 kinds)

Reduce the shortage
of resources

[206] 2020 Protective
resources Q-Learning To whom the resources

should be allocated

Reduce infections,
and minimize the cost

of resources

[195] 2022 Vaccines DDQN To whom the vaccines
should be allocated Reduce infections

Continuous

[64] 2021 Surgical masks,
hospital beds DDPG Percentage of resources

allocated to each block Reduce infections

[63] 2022 Vaccines PPO Percentage of resources
allocated to each block Reduce infections

[65] 2022 Surgical masks,
hospital beds DDPG Percentage of resources

allocated to each block Reduce infections

[232] 2021 Vaccines PG
Probablity of
individualistic

or collectivist strategy
Reduce infections

[9] 2020 Vaccines Actor-Critic, DQN Percentage of resources
allocated to each block

Reduce infections,
and minimize the cost

of resources
Table 10. A summary of RL methods used for medical resources allocation

et al. [147] apply the DDQN algorithm to select an official intervention policy from 3 candidate policies to reduce
infections and maintain the social economy. Hui et al. [94] design a method based on the D3QN algorithm to determine
Manuscript submitted to ACM



A Survey of Machine Learning for Urban Decision Making: Applications in Planning, Transportation, and Healthcare25

the strength of the intra-city lockdown and inter-city traveling restriction policies, each from 3 options. And Song
et al. [204] use model-based RL to decide official restriction policy, selected from 3 optional levels. With respect to
continuous action space methods, Nowé et al. [114] propose using the PPO algorithm to determine the probability
of keeping schools open or locking them down, a continuous value varying from 0 to 1, and they manage to reduce
the infections. Mousannif et al. [32] hire the DDPG, PPO, and TD3 algorithms to calculate the strength of mobility
restriction policies, balancing the pandemic intervention and the social economy.
Medical resources allocation. Similar to the populationmobility restriction decision, medical resource allocation is also
a sequential decision problem. The goal is to allocate limited resources to each urban block at each time step according
to the pandemic spreading situation and thus minimizing the damage caused by the pandemic. Therefore, reinforcement
learning is commonly used in medical resource allocation problems. Existing methods respectively focus on various
kinds of medical resources, such as vaccines [9, 15, 63, 195, 232, 266], personal protection equipment [64, 65, 206],
ventilators [14], and hospital beds [64, 65], as illustrated in Table 10.

In the discrete category, Jones et al. [14] design a Q-Learning algorithm to determine the sharing policy of ventilators
among cities, reducing the shortage of such kind of resources. Hanzo et al. [206], Falou et al. [195], and Jahanshahi
et al. [15], respectively use the Q-Learning, DDQN, and actor-critic algorithm to determine to whom the resources
should be allocated with priority, with the same aim of reducing infections and minimizing the cost of resources. In the
continuous category, Li et al. [64, 65] propose using the DDPG algorithm to decide the percentage of surgical masks
and hospital beds allocated to each urban block, aiming to reduce infections. Besides, Sethi et al. [9] and Li et al. [63]
respectively employ actor-critic and PPO algorithm to determine the percentage of vaccines allocated to each block.

In summary, the task of urban healthcare decisions often necessitates multiple data sources, which are collected
through various approaches and contain plentiful information about the urban decision environment. Such data sources
exhibit great heterogeneity, presented in various modalities, including tensors, tables, graphs, texts, etc, bringing
about the challenge of high urban information heterogeneity. Facing highly heterogeneous data, human experts and
conventional decision methods lack the capability to thoroughly extract the hidden information from the data, causing
them to struggle to comprehensively utilize the plentiful information to make optimized decisions. In contrast, advanced
machine learning approaches can process multi-modal heterogeneous data with various network structures, such
as MLP, CNN, GNN, and Transformers, extracting hidden information from them. Meanwhile, RL algorithms can
automatically consider all available information, and output comprehensively optimized decisions. For example, one
existing machine learning approach that utilizes self-supervised representation learning with MLP and GNN to combine
heterogeneous data of population mobility, pandemic spreading situation, and demographic features, and then uses RL
to solve the medical resources allocation problem, has shown supreme performance tested on various metropolis with
millions of population [63].

5 FUTURE DIRECTIONS AND OPEN PROBLEMS

5.1 Advanced Machine Learning Techniques

The previously mentioned three major challenges of urban decision making—intrinsic complexity, urban heterogeneity,
computational cost—can be better addressed by utilizing more advanced machine learning techniques. First, rich
knowledge from diverse sources such as urban related texts and spatio-temporal data provides valuable insights into the
complexity of cities, making the construction of urban knowledge graphs beneficial for data-driven decision approaches.
Second, the emergent ability of foundation models indicate a promising direction for tackling urban heterogeneity by
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pretraining urban decision models with large-scale cross-city data. Third, while reinforcement learning approaches
offer superior inference speed for generating urban decision solutions, the training process is often expensive, where
advanced techniques can be leveraged to build sample efficient RL models and reduce training costs. We now elaborate
on these three aspects with specific potential machine learning techniques for addressing the three challenges.
Urban Knowledge Graph. Cities are complex systems containing various types of knowledge, such as the functional
connections between different areas. However, existing methods for urban decision making are mainly based on
data and ignore the rich urban knowledge, which can lead to suboptimal results. A knowledge graph is a structured
representation of knowledge that describes the relations between entities through edge connections between nodes,
and has a wide range of applications such as question answering (QA). Urban knowledge graph (UrbanKG) [120, 210]
combines knowledge graph and urban computing, which aggregates multi-source data such as area and POI, and can
support different tasks. For example, UrbanKG is used to select locations for brands to open stores [121]. Considering the
intrinsic complexity of cities, UrbanKG is a promising direction to support knowledge-driven urban decision-making.
FoundationModels. Currently, most of existing approaches train separate models for different cities and decision tasks,
which can be time-consuming and resource-intensive. More importantly, different cities and tasks share commonalities,
and what is learned in one city or task can be useful in other scenarios. Foundation models for decision making are
recently proposed [161, 229], capable of addressing different decision tasks, including video games, continuous control,
and TSP problems. In urban scenarios, universal prediction models [246] trained with large-scale cross-city data has
been proposed and we believe urban decision foundation models can have far-reaching implications in future research.
Advanced Reinforcement Learning. Training RL models for urban decision can be expensive as it is risky to deploy
bad policies to real cities. Additionally, building city simulators as the environment to collect online training data is
often costly. In contrast, there exists large amount of offline data from the city’s operations which can be utilized to
train RL models in a pure data-driven way without the need for massive active interactions with the environment.
Such training strategies, also known as offline RL, has become popular which combines the strengths of supervised
learning and reinforcement learning, and we believe further exploration can significantly address the computational
cost of training RL models for urban decision.

Reinforcement learning methods rely on quantified reward functions, which are not well-suited for tasks with
non-quantifiable metrics. However, since the city represents a dense gathering of people, the actual feedback from
citizens is the ultimate evaluation criterion for urban decision-making tasks, which is usually difficult to quantify.
Recently, reinforcement learning from human feedback (RLHF) has significantly advanced the boundaries of what
RL is capable of. For example, RL models can learn human preferences and generate policies that better match human
preferences [41], or obey human instructions [149], or even design mechanisms that align with human values [91].
As for smart cities, RLHF makes it possible to learn from actual citizen feedback, and thus has the potential to realize
human-centered urban decision making.

5.2 Other Urban Decision Issues

Control of Urban Infrastructure.With the development of machine learning, it is now possible to manage the urban
infrastructures automatically, which can better meet the needs of urban development while consuming fewer resources
compared to human operators. First, deep learning methods can be used for prediction and detection tasks to assist
in infrastructure management. For example, Hu et al. [73] proposed a multi-scale convolutional networks to detect
leakage in water networks. Second, reinforcement learning based approaches can be developed to directly control urban
infrastructure. For instance, multi-agent reinforcement learning (MARL) is employed to regulate the voltage of power
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distribution networks [212]. The application of machine learning in urban infrastructure control is still in its early stage,
and we recommend two related surveys [2, 57] for further details.
Urban EmergencyManagement.Developing machine learning methods for emergency management can significantly
improve resource allocation efficiency and reduce disaster losses, which is a crucial future direction for smart cities.
To achieve this, it is crucial to gather sufficient data on disasters, based on which machine learning methods offer
promising solutions for emergency management. Initially, machine learning methods were used for prediction and
simulation tasks such as forecasting disasters and estimating post-disaster resource requirements [74, 180]. With the
rise of RL, more research has focused on decision-making tasks in emergency management. For example, Yang et

al. [242] proposed a multi-agent reinforcement learning approach for volunteer scheduling to reduce response time and
improve the efficiency of victim rescuing. Zhao et al. [256] developed a resource distribution framework for health crisis
based on the DQN [142] model. We refer to two surveys [96, 179] for more details on urban emergency management.
Data Privacy. The massive data used in urban decision research is generated by people in cities and machines
manipulated by people, such as mobility data of people and vehicles in urban decision making regarding healthcare
and transportation. However, using such data requires caution to avoid compromising the privacy of urban residents,
whose trajectories can be recovered from the data. Therefore, integrating privacy protection into data-driven models is
an important research question in smart cities. Additionally, the data in the city may be distributed among different
organizations, such as different companies providing logistics services and different bike-sharing platforms. It is also a
challenge to manage the use of the data from different sources in an integrated manner to achieve maximum intelligence.
In recent years, federated learning has been proposed that can train machine learning models using data from different
platforms simultaneously without violating user privacy [105], which is a promising direction for future research and
we believe it can significantly enhance the applicability of machine learning methods for urban decision-making.
Explainability. Although machine learning models significantly outperform traditional methods in urban decision-
making tasks, they often function as black boxes with limited explainability, posing a critical issue in practical applica-
tions, as urban planning, transportation and healthcare typically involve multiple stakeholders. On the one hand, the
actual deployment of the solution is often irreversible, necessitating adequate explanations to achieve consensus among
stakeholders—–for instance, when constructing a planned road network. On the other hand, explainability helps us
understand what the machine learning model captures, enabling iterative improvements by introducing inductive biases
based on domain knowledge and verifying whether the model has learned them. In recent years, a series of studies
on the explainability of machine learning models have been proposed [19, 26]. We believe that explainable machine
learning is a promising future direction in urban decision-making, enhancing both the transparency and effectiveness
of these advanced techniques.

5.3 Urban Decision and Simulation

In practical urban decision-making, we need to frequently evaluate the effects of different strategies to improve the
model and finally obtain a solution for deployment. Only the obtained final solution is operated in the real world, while
a large number of solutions in the training process must be evaluated virtually through simulation. Existing approaches
tend to build a simplified simulator to simulate and evaluate the solutions given by the machine learning models.
For example, in road network planning, a simplified model of traffic participants is constructed to evaluate different
road plans [56]. However, the city is a complex system with non-trivial correlations between different factors, and a
simplified simulator may make the model biased, leading to undesirable performance. Therefore, building a high-fidelity
city simulator that models various kinds of dynamics in the city will be very helpful for urban decision research [249].
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A high-precision urban simulator makes it possible to accurately evaluate the effects of different strategies, enabling
better performance of the obtained solution when actually deployed. For instance, the simulator can be integrated into
the environment of reinforcement learning to achieve successful simulation-to-real (sim2real) transfer [255].

The disparity in execution time between decision models and urban simulations presents a significant bottleneck
in simulation-based urban decision-making. Decision models, particularly those using neural network inference in
deep reinforcement learning, can deliver solutions within milliseconds. In contrast, urban simulations—due to the large
number of simulated entities and intricate dynamics between them—are computationally expensive, often requiring
several minutes, substantially slower than decision-making models. This discrepancy hampers the training process,
as decision models are forced to wait for simulation results, leading to inefficiencies. Given that urban decision
models typically necessitate millions of episodic interactions with the simulator, this delay can render model training
prohibitively costly, if at all feasible.

Addressing this critical challenge requires future research to harmonize the disparate timescales of decision-making
and simulation, creating an efficient, synchronized feedback loop without delay. One promising direction is the use of
reward models [194], which approximate the outcomes of slow simulations using neural networks, thus bridging the
gap between fast decision-making and slow simulation. We believe this intersection of urban decision-making and
simulation holds considerable potential and advocate for increased attention to this area in future research.

6 CONCLUSION

Urban decision making can become substantially more effective and efficient with the help of machine learning. In this
survey, we systematically reviewed existing approaches that use machine learning for urban decision making related to
planning, transportation, and healthcare. Besides what has been widely studied, we discussed some open problems and
future directions in smart cities, including recent advances in machine learning that have not yet been applied in smart
cities, as well as other urban decision issues, such as the control of urban infrastructure and user privacy protection in
data-driven urban decision models. This survey can be a valuable resource for researchers in related fields, aiding their
understanding of the evolution of smart cities and fostering innovative developments in smart urban research.
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